Korridor Hamburg / Bremen - Hannover

Ausbau für den Schienenverkehr

Machbarkeitsstudie

DB Netz AG
Regionalbereich Nord
Lindemannallee 3, 30173 Hannover

DB International GmbH
Region Deutschland Nord
Elisabeth-Schwarzhaupt-Platz 1
10115 Berlin
29.11.2013
Versionen

<table>
<thead>
<tr>
<th>Version</th>
<th>Datum</th>
<th>Autor</th>
<th>Änderungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>30.11.2012</td>
<td>DB International</td>
<td>Erstellung Bericht</td>
</tr>
<tr>
<td>2.0</td>
<td>26.03.2013</td>
<td>DB International</td>
<td>Ergänzung um die Variante NBS Ashausen - Unterlüß</td>
</tr>
<tr>
<td>3.0</td>
<td>23.04.2013</td>
<td>DB International</td>
<td>Ergänzung Anmerkungen DB Netz AG</td>
</tr>
<tr>
<td>4.0</td>
<td>31.10.2013</td>
<td>DB International</td>
<td>Ergänzung um die Untervariante NBS Ashausen - Suderburg und die Variante ABS 1960 (1-gleisig)</td>
</tr>
<tr>
<td>5.0</td>
<td>29.11.2013</td>
<td>DB International</td>
<td>Ergänzung Anmerkungen DB Netz AG</td>
</tr>
<tr>
<td>Inhaltsverzeichnis</td>
<td>Seite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Aufgabenstellung.</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1 Allgemeine Erläuterungen</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2 Variante SGV-Y</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3 Variante ABS 1720</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4 Variante NBS Ashausen – Suderburg/Unterlüß</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5 Variante ABS 1960 (1-gleisig)</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.6 Punktuelle Maßnahmen auf der Strecke 1740</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.7 Risiko- und Kostenabschätzung zu Fragen des Natur- und Gewässerschutzes</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.8 Schalltechnische Untersuchung</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Ergebnisse</td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1 Allgemeines</td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2 Baukastenprinzip</td>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3 Variante SGV-Y</td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.4 Variante ABS 1720</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5 Variante NBS Ashausen – Suderburg/Unterlüß</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.6 Variante ABS 1960 (1-gleisig)</td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.7 Zusammenfassung der Ergebnisse</td>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.8 Variantenvergleich</td>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Allgemeine Grundlagen für die technische Planung</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1 Variante SGV-Y</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2 Variante ABS 1720</td>
<td>39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3 Variante NBS Ashausen – Suderburg/Unterlüß</td>
<td>42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.4 Variante ABS 1960 (1-gleisig)</td>
<td>48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5 Kosten</td>
<td>51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Korrespondierende Maßnahmen</td>
<td>53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1 ESTW Celle</td>
<td>53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2 Herstellung Dreigleisigkeit auf dem Streckenabschnitt Stelle - Lüneburg</td>
<td>53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.3 Spurplananpassung Einbindung Uelzen</td>
<td>53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Risiko- und Kostenabschätzung zu Fragen des Natur- und Gewässerschutzes</td>
<td>54</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5.1 Datengrundlagen und Vorgehensweisen .. 54
5.2 Umweltverträglichkeitsstudie ... 55
5.3 Landschaftspflegerischer Begleitplan .. 55
5.4 Artenschutz ... 56
5.5 Naturschutzflächen ... 58
5.6 Schutzgebiete nach Wasserhaushaltsgesetz .. 61
5.7 Risikobewertung der Schutzgebiete ... 62
6 Schalltechnische Untersuchung ... 64
 6.1 Rechtliche Grundlagen .. 64
 6.2 Schalltechnische Grundlagen .. 64
7 Beschreibung und Ergebnisse Variante SGV-Y ... 66
 7.1 Verkehrsanlagen .. 66
 7.2 Ingenieurbauwerke ... 69
 7.3 Anlagen der Leit- und Sicherungstechnik ... 73
 7.4 Oberleitungsanlage .. 74
 7.5 Elektrotechnische Anlagen für Licht- und Kraftstrom 77
 7.6 Naturschutz .. 79
 7.7 Schalltechnische Untersuchung ... 86
8 Beschreibung und Ergebnisse Variante ABS 1720 .. 87
 8.1 Verkehrsanlagen .. 87
 8.2 Ingenieurbauwerke ... 92
 8.3 Anlagen der Leit- und Sicherungstechnik ... 94
 8.4 Oberleitungsanlage .. 96
 8.5 Elektrotechnische Anlagen für Licht- und Kraftstrom 103
 8.6 Naturschutz .. 106
 8.7 Schalltechnische Untersuchung ... 110
9 Beschreibung und Ergebnisse Variante NBS Ashauen – Suderburg/Unterlüß .. 111
 9.1 Beschreibung und Ergebnisse Variante NBS Ashauen – Unterlüß 111
 9.2 Beschreibung und Ergebnisse Variante NBS Ashauen – Suderburg 130
10 Variante ABS 1960 (1-gleisig) ... 138
 10.1 Verkehrsanlagen ... 138
 10.2 Ingenieurbauwerke .. 142
 10.3 Anlagen der Leit- und Sicherungstechnik .. 144
10.4 Oberleitungsanlage .. 144
10.5 Elektrotechnische Anlagen für Licht- und Kraftstrom 146
10.6 Naturschutz ... 147
10.7 Schalltechnische Untersuchung ... 149
11 Erschütterung – sekundärer Luftschall .. 150
 11.1 Grundsatz ... 150
 11.2 Schienenverkehr .. 150
Anhänge

Anhang 1 Ermittlung Breite Mittelbahnsteige Eschede und Suderburg
Anhang 2 Streckenspeiseplanausschnitte DB Energie
Anhang 3 Regelquerschnitte
Anhang 4 Abschnittsergebnisse im Baukastenprinzip
Tabellen

<table>
<thead>
<tr>
<th>Tabelle</th>
<th>Inhaltsangabe</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tabelle 1</td>
<td>Immissionsgrenzwerte nach § 2 Abs. 1 der 16. BImSchV</td>
<td>20</td>
</tr>
<tr>
<td>Tabelle 2</td>
<td>Kostenschätzung Variante SGV-Y</td>
<td>23</td>
</tr>
<tr>
<td>Tabelle 3</td>
<td>Risiken aus Schutzgebieten Variante SGV-Y</td>
<td>24</td>
</tr>
<tr>
<td>Tabelle 4</td>
<td>Kostenschätzung Variante ABS 1720</td>
<td>25</td>
</tr>
<tr>
<td>Tabelle 5</td>
<td>Risiken aus Schutzgebieten Variante ABS 1720</td>
<td>26</td>
</tr>
<tr>
<td>Tabelle 6</td>
<td>Kostenschätzung Variante NBS Ashausen - Unterlüß</td>
<td>28</td>
</tr>
<tr>
<td>Tabelle 7</td>
<td>Risiken aus Schutzgebieten Variante NBS Ashausen - Unterlüß</td>
<td>29</td>
</tr>
<tr>
<td>Tabelle 8</td>
<td>Kostenschätzung Variante NBS Ashausen - Suderburg</td>
<td>30</td>
</tr>
<tr>
<td>Tabelle 9</td>
<td>Risiken aus Schutzgebieten Variante NBS Ashausen - Suderburg</td>
<td>31</td>
</tr>
<tr>
<td>Tabelle 10</td>
<td>Kostenschätzung Variante ABS 1960 (1-gleisig)</td>
<td>32</td>
</tr>
<tr>
<td>Tabelle 11</td>
<td>Risiken aus Schutzgebieten Variante ABS 1960 (1-gleisig)</td>
<td>33</td>
</tr>
<tr>
<td>Tabelle 12</td>
<td>Zusammenfassung der Ergebnisse aller Varianten</td>
<td>34</td>
</tr>
<tr>
<td>Tabelle 13</td>
<td>Angenommene Kosten für Kartierleistungen</td>
<td>57</td>
</tr>
<tr>
<td>Tabelle 14</td>
<td>Datenstände und -lieferanten für die nationalen Schutzgebiete</td>
<td>58</td>
</tr>
<tr>
<td>Tabelle 15</td>
<td>Datenstände und -lieferanten für die europäische Schutzgebiete</td>
<td>60</td>
</tr>
<tr>
<td>Tabelle 16</td>
<td>Risikoklassen und deren Einstufungskriterien</td>
<td>63</td>
</tr>
<tr>
<td>Tabelle 17</td>
<td>Einstufung der Schutzgebiete in die Risikoklassen</td>
<td>63</td>
</tr>
<tr>
<td>Tabelle 18</td>
<td>Identifizierte Schutzgebiete Variante SGV-Y Soltau</td>
<td>79</td>
</tr>
<tr>
<td>Tabelle 19</td>
<td>Identifizierte Schutzgebiete Variante SGV-Y Umfahrung Soltau</td>
<td>79</td>
</tr>
<tr>
<td>Tabelle 20</td>
<td>Kostenabschätzung für UVS und naturschutzfachliche Planungsleistungen</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Variante NBS Celle - Maschen</td>
<td></td>
</tr>
<tr>
<td>Tabelle 21</td>
<td>Kostenabschätzung für naturschutzfachliche Kompensationsmaßnahmen</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>Variante NBS Celle - Maschen</td>
<td></td>
</tr>
<tr>
<td>Tabelle 22</td>
<td>Kostenabschätzung für UVS und naturschutzfachliche Planungsleistungen</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>Variante ABS Soltau - Langwedel</td>
<td></td>
</tr>
<tr>
<td>Tabelle 23</td>
<td>Kostenabschätzung für naturschutzfachliche Kompensationsmaßnahmen</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>Variante ABS Soltau - Langwedel</td>
<td></td>
</tr>
<tr>
<td>Tabelle 24</td>
<td>Kostenabschätzung für UVS und naturschutzfachliche Planungsleistungen</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>Variante ABS Soltau - Langwedel; Umfahrung Soltau</td>
<td></td>
</tr>
</tbody>
</table>
Tabelle 25 - Kostenabschätzung für naturschutzfachliche
Kompensationsmaßnahmen Variante ABS Soltau – Langwedel; Umfahrung Soltau ... 85

Tabelle 26 - Identifizierte Schutzgebiete Variante ABS 1720.. 106

Tabelle 27 - Kostenabschätzung für UVS und naturschutzfachliche Planungsleistungen Variante ABS Celle - Uelzen.. 107

Tabelle 28 - Kostenabschätzung für naturschutzfachliche Kompensationsmaßnahmen Variante ABS Uelzen – Ashausen 108

Tabelle 29 - Kostenabschätzung für UVS und naturschutzfachliche Planungsleistungen Variante ABS Uelzen – Ashausen 109

Tabelle 30 - Identifizierte Schutzgebiete Variante NBS Ashausen – Unterlüß.................... 125

Tabelle 31 – Kostenabschätzung für UVS und naturschutzfachliche Planungsleistungen Variante NBS Ashausen - Unterlüß 126

Tabelle 32 – Kostenabschätzung für naturschutzfachliche Kompensationsmaßnahmen Variante NBS Ashausen - Unterlüß 127

Tabelle 33 – Kostenabschätzung für UVS und naturschutzfachliche Planungsleistungen Variante NBS Ashausen - Unterlüß, ABS 1960 Uelzen (a) - Abzw Ebstorf West ... 128

Tabelle 34 – Kostenabschätzung für naturschutzfachliche Kompensationsmaßnahmen Variante NBS Ashausen - Unterlüß, ABS 1960 Uelzen (a) – Abzw Ebstorf West .. 129

Tabelle 35 - Identifizierte Schutzgebiete Variante NBS Ashausen – Suderburg.............. 135

Tabelle 36 – Kostenabschätzung für UVS und naturschutzfachliche Planungsleistungen Variante NBS Ashausen - Suderburg 136

Tabelle 37 – Kostenabschätzung für naturschutzfachliche Kompensationsmaßnahmen Variante NBS Ashausen - Unterlüß 136

Tabelle 38 - Identifizierte Schutzgebiete Variante ABS 1960 (1-gleisig).............................. 147

Tabelle 40 – Kostenabschätzung für naturschutzfachliche Kompensationsmaßnahmen Variante ABS 1960 (1-gleisig) 148
<table>
<thead>
<tr>
<th>Abbildungen</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbildung 1 – Y-Trasse als Ergebnis des Raumordnungsverfahrens 2000/2001</td>
<td>11</td>
</tr>
<tr>
<td>Abbildung 2 – Variante SGV-Y</td>
<td>13</td>
</tr>
<tr>
<td>Abbildung 3 – Variante ABS 1720 (Celle – Ashausen)</td>
<td>14</td>
</tr>
<tr>
<td>Abbildung 4 – Variante ABS 1720 (Uelzen – Ashausen)</td>
<td>15</td>
</tr>
<tr>
<td>Abbildung 5 – Variante NBS Ashausen – Unterlüß</td>
<td>16</td>
</tr>
<tr>
<td>Abbildung 6 – Variante NBS Ashausen – Suderburg</td>
<td>17</td>
</tr>
<tr>
<td>Abbildung 7 – Variante ABS 1960 (1-gleisig)</td>
<td>18</td>
</tr>
<tr>
<td>Abbildung 8 – Strecke 1720, zusätzliche Weichenverbindung km 41,9 – km 42,1</td>
<td>87</td>
</tr>
<tr>
<td>Abbildung 9 – Strecke 1720, Bahnsteig km 43,3</td>
<td>87</td>
</tr>
<tr>
<td>Abbildung 10 – Strecke 1720, OHE km 45,1</td>
<td>88</td>
</tr>
<tr>
<td>Abbildung 11 – Strecke 1720, Kreuzungsbauwerk südlich von Uelzen km 94,2</td>
<td>89</td>
</tr>
<tr>
<td>Abbildung 12 – Strecke 1720, Rückbau Wohnbebauung km 133,0 – 133,2</td>
<td>90</td>
</tr>
<tr>
<td>Abbildung 13 – Strecke 1720, Bardowick km 137,5</td>
<td>91</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Deutscher Begriff</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>ABS</td>
<td>Ausbaustrecke</td>
</tr>
<tr>
<td>Abzw</td>
<td>Abzweig</td>
</tr>
<tr>
<td>Bf</td>
<td>Bahnhof</td>
</tr>
<tr>
<td>BÜ</td>
<td>Bahnübergang</td>
</tr>
<tr>
<td>BZ</td>
<td>Betriebszentrale</td>
</tr>
<tr>
<td>ESTW</td>
<td>Elektronisches Stellwerk</td>
</tr>
<tr>
<td>ETCS</td>
<td>European Train Control System</td>
</tr>
<tr>
<td>EÜ</td>
<td>Eisenbahnüberführung</td>
</tr>
<tr>
<td>HOA/FBOA</td>
<td>Heißläuferortungsanlage / Festbremsortungsanlage</td>
</tr>
<tr>
<td>LST</td>
<td>Leit- und Sicherungstechnik</td>
</tr>
<tr>
<td>NBS</td>
<td>Neubaustrecke</td>
</tr>
<tr>
<td>OHE</td>
<td>Osthannoverschen Eisenbahnen AG</td>
</tr>
<tr>
<td>Ril</td>
<td>Richtlinie</td>
</tr>
<tr>
<td>ROV</td>
<td>Raumordnungsverfahren</td>
</tr>
<tr>
<td>SGV</td>
<td>Schienengüterverkehr</td>
</tr>
<tr>
<td>SHHV</td>
<td>Seehafen-Hinterland-Verkehr</td>
</tr>
<tr>
<td>SÜ</td>
<td>Straßenüberführung</td>
</tr>
<tr>
<td>TSI</td>
<td>Technischen Spezifikationen für die Interoperabilität</td>
</tr>
<tr>
<td>TEIV</td>
<td>Transeuropäische-Eisenbahn-Interoperabilitätsverordnung</td>
</tr>
<tr>
<td>UiG</td>
<td>Unternehmensinterne Genehmigung</td>
</tr>
<tr>
<td>Üst</td>
<td>Überleitstelle</td>
</tr>
<tr>
<td>UZ</td>
<td>Unterzentrale (ESTW)</td>
</tr>
</tbody>
</table>
1 Aufgabenstellung

1.1 Allgemeine Erläuterungen

Aufgrund veränderter Randbedingungen werden im Zusammenhang mit der Überprüfung der Bedarfsplanung des Bundes im Rahmen der vorliegenden Machbarkeitsstudie folgende fünf Varianten untersucht:

- Neubaustrecke (NBS) für den Mischverkehr zwischen Ashausen und Suderburg/Unterlüß im Weiteren Variante NBS Ashausen – Suderburg/Unterlüß. Diese Variante unterteilt sich in folgende Untervarianten:
 - NBS für den Mischverkehr zwischen Ashausen und Unterlüß mit unmittelbarem Anschluss an Uelzen bzw. den sogenannten „Ostkorridor“ in Richtung Stendal sowie einem Überwerfungsbauwerk in Celle. Im Weiteren „Variante NBS Ashausen – Unterlüß“ genannt

1.2 Variante SGV-Y

Die Variante SGV-Y besteht aus einer zweigleisigen NBS für den Schienengüterverkehr und dem Ausbau der bestehenden Strecke 1960 zwischen Soltau und Langwedel (s. Abbildung 2). Sie unterteilt sich in folgende 3 Abschnitte:

- NBS ab südlich von Maschen bis in Höhe Soltau in Bündelung mit der BAB 7,
- NBS ab Höhe Soltau bis Celle in möglichst direkter Linie und
- Ausbaustrecke von Soltau bis Langwedel (*dabei entspricht der westliche Abschnitt Visselhövede – Langwedel der Vorplanung der DB ProjektBau*)

Alle Strecken werden elektrifiziert. Für die Ortslage Soltau wird zusätzlich als Untervariante eine Umfahrung südlich von Soltau betrachtet.

Abbildung 2 – Variante SGV-Y

Die Anbindungen an die bestehenden Strecken werden:

- im Norden zwischen Maschen und Jesteburg,
- im Süden im Bahnhof Celle und
- östlich von Soltau bzw. bei einer Umfahrung westlich von Soltau geplant.
Für alle Streckenabschnitte wird eine Geschwindigkeit von maximal 160 km/h vorgesehen. Im betrachteten Bereich sind drei Bahnhöfe mit je einem Überholungsgleis neben dem Streckengleis je Richtung geplant:

- mittig zwischen der Anbindung im Norden und Soltau,
- südöstlich von Soltau und
- in Visselhövede.

1.3 Variante ABS 1720

1.3.1 Variante ABS 1720 (Celle – Ashausen)

Die Variante ABS 1720 beinhaltet im Wesentlichen den Ausbau der Streckenabschnitte:

- Celle - Uelzen von zwei auf drei Gleise,
- Uelzen - Lüneburg von zwei auf vier Gleise und
- Lüneburg - Ashausen von drei auf vier Gleise.

Der Trassenverlauf ist durch die bestehende Eisenbahnstrecke vorgegeben (s. Abbildung 3).

Abbildung 3 – Variante ABS 1720 (Celle – Ashausen)

Zur Einbindung der zusätzlichen Gleise kommt es in den Bahnhöfen Celle, Uelzen und Lüneburg zu umfangreichen Umbauten. Zwischen diesen großen Bahnhöfen wurde der Gleisabstand so ge-
wählt, dass vorhandene Oberleitungsmasten und Lärmschutzwände erhalten werden können. Bei den Verkehrsstationen

- Eschede,
- Suderburg,
- Bad Bevensen,
- Bienenbüttel,
- Bardowick,
- Radbruch und
- Winsen

1.3.2 Variante ABS 1720 (Uelzen – Ashausen)

Im Rahmen der Machbarkeitsstudie wird zusätzlich eine verkürzte Untervariante von Uelzen bis Ashausen mit nachfolgenden Abschnitten betrachtet:

- Uelzen - Lüneburg von zwei auf vier Gleise,
- Lüneburg - Ashausen von drei auf vier Gleise und
- Überwerfungsbauwerk in Celle.

Abbildung 4 – Variante ABS 1720 (Uelzen – Ashausen)
1.4 Variante NBS Ashausen – Suderburg/Unterlüß

1.4.1 Variante NBS Ashausen – Unterlüß

Die Variante NBS Ashausen – Unterlüß besteht aus einer zweigleisigen NBS für den Mischverkehr zwischen Ashausen und Unterlüß mit Anschluss an Uelzen mittels Ausbau der Strecke 1960 ab Höhe Ebostorf sowie einem Überwerfungsbauwerk in Celle. Die Variante NBS Ashausen – Unterlüß unterteilt sich in zwei Abschnitte:

- NBS von Ashausen bis Unterlüß einschl. einem Überwerfungsbauwerk in Celle
- Ausbaustrecke 1960 von Uelzen bis zum Abzweig auf Höhe Ebostorf und alternativ eine Umfahrung südlich von Uelzen mit Anschluss an die Strecke 6899 Richtung Stendal

Alle Strecken werden elektrifiziert.

Für die NBS wird eine Geschwindigkeit von maximal 250 km/h vorgesehen, die Trassierung ist jedoch für maximal 300 km/h ausgelegt. Die Ausbaustrecke 1960 zwischen Uelzen und dem Abzweig zur NBS Ashausen - Unterlüß sowie die NBS Südumfahrung Uelzen mit Anschluss an die Strecke 6899 nach Stendal werden mit einer maximalen Geschwindigkeit von 160 km/h geplant.
Entlang der NBS werden zwei Bahnhöfe mit je einem Überholungsgleis neben dem Streckengleis je Richtung geplant:

- Wriedel (mit Anbindung an die Strecke 1960 Richtung Uelzen)
- Wetzen

Bei einer Südumfahrung von Uelzen wird der Ausbau der Strecke 1960 zwischen Uelzen und Ebstorf West nicht betrachtet.

1.4.2 Variante NBS Ashausen – Suderburg

Die Variante NBS Ashausen – Suderburg besteht aus einer zweigleisigen NBS zwischen Ashausen und Suderburg sowie einem Überwerfungsbauwerk in Celle.

Die Variante NBS Ashausen – Suderburg besteht aus einem Abschnitt:

- NBS von Ashausen bis Suderburg einschl. einem Überwerfungsbauwerk in Celle

Die Strecke wird elektrifiziert.
Für die NBS wird eine Geschwindigkeit von maximal 250 km/h vorgesehen, die Trassierung ist jedoch für maximal 300 km/h ausgelegt.

Entlang der NBS werden zwei Bahnhöfe mit je einem Überholungsgleis neben dem Streckengleis je Richtung geplant:

- Westerweyhe-Nord
- Südergellersen

1.5 **Variante ABS 1960 (1-gleisig)**

Im Rahmen der vorliegenden Machbarkeitsstudie wird die eingleisige Ertüchtigung der Strecke 1960 zwischen Uelzen und Langwedel untersucht.

Für die Ausbaustrecke wird eine Geschwindigkeit von maximal 120 km/h vorgesehen, die Trassierung ist jedoch für maximal 160 km/h ausgelegt.
Sie unterteilt sich in vier Abschnitte:

- Uelzen – Ebstorf West
- Ebstorf West – Soltau
- Soltau – Visselhövede
- Visselhövede – Langwedel (Planungsbereich DB ProjektBau)

Entlang der eingleisigen Bestandsstrecke werden 9 Kreuzungsbahnhöfe vorgesehen:

- Ebstorf
- Brockhöfe
- Munster
- Emmingen
- Soltau
- Leitzingen
- Visselhövede
- Bedingsbostel
- Kirchlinteln

1.6 Punktuelle Maßnahmen auf der Strecke 1740

1.7 Risiko- und Kostenabschätzung zu Fragen des Natur- und Gewässerschutzes

Im Rahmen dieser Machbarkeitsstudie werden Risiken und Kosten, die sich aus den Umweltauswirkungen der betrachteten Varianten ergeben, ermittelt bzw. abgeschätzt. Es werden die naturschutz- und wasserrechtlichen Risiken beschrieben und mit einer ersten Kostenabschätzung zur Vermeidung oder zum Ausgleich von Beeinträchtigungen hinterlegt. Der Betrachtungsmaßstab liegt im kleinen bis mittleren Maßstabsbereich (ca. 1:50.000 – 1:25.000). Die Daten sind mit zunehmender Detailtiefe in den nachfolgenden Planungsschritten weiter zu konkretisieren.

Bei der Ermittlung der Grundlagendaten sollte nur auf allgemein bzw. öffentlich zugängliche Informationsquellen zurückgegriffen werden, da direkte Kontakte zu bzw. Anfragen bei Behörden oder anderen Institutionen vom Auftraggeber ausdrücklich nicht gewünscht waren.

1.8 Schalltechnische Untersuchung

Die Aufgabenstellung besteht darin, die sich durch die baulichen Maßnahmen ergebenden Änderungen bei den Anwohnern schalltechnisch zu bewerten, Maßnahmen zur Einhaltung der Grenzwerte vorzuschlagen und die Kosten für aktive und passive Schallschutzmaßnahmen abzuschätzen.

Bei Feststellung, dass die Grenzwerte nach § 1 Abs. 2, Ziffer 1 der 16. BImSchV überschritten werden, müssen zum Schutz der Nachbarschaft durch Verkehrsgeräusche nach § 2 Abs. 1 der 16. BImSchV nachfolgende Grenzwerte eingehalten werden - siehe Tabelle 1.
<table>
<thead>
<tr>
<th>Gebietskategorie</th>
<th>Tag (6:00 – 22:00 Uhr)</th>
<th>Nacht (22:00 - 6:00 Uhr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Krankenhäuser, Schulen, Kur- und Altenheime</td>
<td>57 dB (A)</td>
<td>47 dB (A)</td>
</tr>
<tr>
<td>Wohngebiete, Kleinsiedlungsgebiete</td>
<td>59 dB(A)</td>
<td>49 dB(A)</td>
</tr>
<tr>
<td>Kern-, Dorf- und Mischgebiete</td>
<td>64 dB (A)</td>
<td>54 dB (A)</td>
</tr>
<tr>
<td>Gewerbegebiete</td>
<td>69 dB (A)</td>
<td>59 dB (A)</td>
</tr>
</tbody>
</table>

Tabelle 1 – Immissionsgrenzwerte nach § 2 Abs. 1 der 16. BImSchV

Schienenbonus und das Verfahren „Besonders überwachtes Gleis“ werden im Rahmen dieser Machbarkeitsstudie **nicht** in Ansatz gebracht.
2 Ergebnisse

2.1 Allgemeines

So verhält es sich auch bei den hier betrachteten Varianten.

Zur Bewertung der Umweltauswirkungen der Varianten wurden folgende Schutzgebietstypen betrachtet:

- Biosphärenreservate
- FFH-Gebiete
- Vogelschutzgebiete
- Naturparke
- Nationalparke
- Naturschutzgebiete
- Landschaftsschutzgebiete
- Wasserschutzgebiete
- Heilquellenschutzgebiete

Alle hier betrachteten Varianten sind grundsätzlich technisch machbar.

Zum jetzigen Zeitpunkt sind keine Sachverhalte erkennbar, die einer grundsätzlichen Genehmigungsfähigkeit einer der fünf Varianten entgegenstehen.

Neben dem vorliegenden Ergebnisbericht sind folgende Unterlagen Inhalt des Druckexemplars der Machbarkeitsstudie:

- Aufgabenstellung
- Kostenzusammenstellung
- Streckenbänder (alle Varianten)
- Lagepläne auf Basis von Satellitenbildern (nur Neubaustrecken)
- Isophonen Darstellung (alle Varianten)

Alle Unterlagen werden ebenfalls digital übergeben.
2.2 Baukastenprinzip

Die Ergebnisse der Streckenabschnitte sind im Anhang 4 des Erläuterungsberichtes dargestellt. Folgende Abschnitte sind in der Machbarkeitsstudie gebildet:

Variante SGV-Y
- NBS Celle – Soltau
- NBS Soltau – Abzw Maschen
- ABS 1960 Soltau – Visselhövede (mit Durchfahrt des Bahnhof Soltaus)
- Umfahrung Soltau – Visselhövede (Untervariante als Alternative zur Durchfahrt des Bahnhofs Soltau)
- ABS 1960 Visselhövede – Langwedel

Variante ABS 1720
- ABS 1720 Celle - Uelzen
- ABS 1720 Uelzen - Ashausen
- ABS 1720 Uelzen – Ashausen einschl. Überwerfungsbauwerk in Celle (bei Entfall des dreigleisigen Ausbau zwischen Celle und Uelzen)

Variante NBS Ashausen - Unterlüß
- NBS Unterlüß – Ashausen einschl. Überwerfungsbauwerk in Celle
- ABS 1960 Uelzen – Ebstorf West
- NBS Südumfahrung Uelzen

Variante NBS Ashausen - Suderburg
- NBS Suderburg – Ashausen einschl. Überwerfungsbauwerk in Celle

Variante ABS 1960 (1-gleisig)
- ABS 1960 Uelzen – Ebstorf West
- ABS 1960 Ebstorf West – Soltau
- ABS 1960 Soltau – Visselhövede
- ABS 1960 Visselhövede – Langwedel
2.3 **Variante SGV-Y**

<table>
<thead>
<tr>
<th>Baumaßnahmen</th>
<th>Summe Variante Soltau TEUR</th>
<th>Summe Variante Umfahrung Soltau TEUR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verkehrsanlagen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bahnbau</td>
<td>487.625</td>
<td>477.711</td>
</tr>
<tr>
<td>Straßenbau</td>
<td>98.397</td>
<td>45.386</td>
</tr>
<tr>
<td>Ingenieurbauwerke</td>
<td>445.995</td>
<td>447.464</td>
</tr>
<tr>
<td>Technische Ausrüstung</td>
<td>417.779</td>
<td>396.285</td>
</tr>
<tr>
<td>Landschaftsbau, Ausgleichs-, CEF- und FCS-Maßnahmen</td>
<td>274.585</td>
<td>275.296</td>
</tr>
<tr>
<td>Kabel und Leitungen Dritter</td>
<td>8.837</td>
<td>8.864</td>
</tr>
<tr>
<td>Sonstiges</td>
<td>37.892</td>
<td>35.034</td>
</tr>
<tr>
<td>Zwischensumme</td>
<td>1.711.109</td>
<td>1.686.034</td>
</tr>
</tbody>
</table>

Tabelle 2 – Kostenschätzung Variante SGV-Y

Die Gesamtkosten bei einer südlichen Umfahrung von Soltau sind ca. 50 Mio. Euro geringer. Dies resultiert vor allem aus zwei Punkten:

- der Bf Soltau verbleibt im Bestand und
- bei einer Südführung von Soltau gibt es weniger Betroffene und damit weniger Schallschutzmaßnahmen als bei einer Durchfahrt durch Soltau

<table>
<thead>
<tr>
<th>Schutzgebietstyp</th>
<th>Variante SGV-Y</th>
<th>Variante SGV-Y</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Summe</td>
<td>Umfahrung Soltau</td>
</tr>
<tr>
<td></td>
<td>[km]</td>
<td>[km]</td>
</tr>
<tr>
<td>FFH-Gebiet</td>
<td>5,140</td>
<td>5,550</td>
</tr>
<tr>
<td>Heilquellenschutzgebiet</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Landschaftsschutzgebiet</td>
<td>28,295</td>
<td>27,215</td>
</tr>
<tr>
<td>Naturschutzgebiet</td>
<td>4,790</td>
<td>5,370</td>
</tr>
<tr>
<td>Überschwemmungsschutzgebiet</td>
<td>1,005</td>
<td>0,865</td>
</tr>
<tr>
<td>Vogelschutzgebiet</td>
<td>3,720</td>
<td>3,720</td>
</tr>
<tr>
<td>Wasserschutzgebiet</td>
<td>37,745</td>
<td>37,745</td>
</tr>
</tbody>
</table>

Tabelle 3 – Risiken aus Schutzgebieten Variante SGV-Y

Als höchst kritisch ist anzusehen, dass alle tangierten FFH-Gebiete durch das Vorkommen prioritärer Lebensräume bzw. -arten bestimmt sind, für die nach der FFH-Richtlinie im Falle von Eingriffen besonders strenge Schutzvorschriften gelten.

Die daraus entstehenden Projektrisiken können allerdings zum derzeitigen Planungsstand noch nicht näher beschrieben werden, da hierzu genauere Datengrundlagen über das Vorhandensein der besonders kritischen Kernzonen erforderlich sind. Sie liegen zum jetzigen Zeitpunkt nicht vor bzw. konnten aufgrund der vorgegebenen Rahmenbedingungen (keine Behördenkontakte) nicht in die Bewertung einbezogen werden.

In Summe sind bei der Variante SGV-Y ca. 25.200 WE durch Schallimmissionen betroffen, bei einer Umfahrung von Soltau sind es ca. 21.100 WE.

Damit ergeben sich Lärmschutzwände auf einer Länge von ca. 65 km, bei einer Umfahrung von Soltau sind es ca. 61 km. Bringt man die abschirmende Wirkung der parallel verlaufenden BAB 7 in Ansatz, würde sich die Lärmschutzwandlänge um ca. 5 km verkürzen.
2.4 Variante ABS 1720

Bei der Variante ABS 1720 ist aufgrund des vordefinierten Trassenverlaufs der Umfang der direkten Betroffenheiten wesentlich größer. In den Bereichen, in denen die vorhandene Bebauung bis unmittelbar an die Bahnanlage heranreicht, ist bei einer Erweiterung der Anlage um ein Gleis in der Regel die erste Bebauungsreihe von der Maßnahme direkt betroffen. So muss z.B. im Bereich von Bardowick die parallel verlaufende BAB 39 auf einer Länge von ca. 2 Kilometern seitlich verschoben werden, was wiederum zu einem Konflikt mit den danebenliegenden Gewerbeansiedlungen führt. In anderen Bereichen sind Wohnhäuser oder die zu den Wohnhäusern gehörenden Gärten betroffen. In einigen Bahnhöfen müssen die Empfangsgebäude abgebrochen werden.

Die Gesamtkosten für diese Variante belaufen sich nach Tabelle 4 auf rund 3,1 Mrd. Euro.

<table>
<thead>
<tr>
<th>Baumaßnahmen</th>
<th>Summe Variante ABS 1720</th>
<th>Summe Variante ABS 1720</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Celle-Ashausen</td>
<td>Uelzen-Ashausen</td>
</tr>
<tr>
<td></td>
<td>TEUR</td>
<td>TEUR</td>
</tr>
<tr>
<td>Verkehrsanlagen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bahnbau</td>
<td>316.962</td>
<td>199.563</td>
</tr>
<tr>
<td>Straßenbau</td>
<td>26.971</td>
<td>25.728</td>
</tr>
<tr>
<td>Ingenieurbauwerke</td>
<td>404.749</td>
<td>312.415</td>
</tr>
<tr>
<td>Technische Ausrüstung</td>
<td>464.544</td>
<td>295.556</td>
</tr>
<tr>
<td>Landschaftsbau, Ausgleichs-, CEF- und FCS-Maßnahmen</td>
<td>230.975</td>
<td>126.328</td>
</tr>
<tr>
<td>Kabel und Leitungen Dritter</td>
<td>13.240</td>
<td>7.684</td>
</tr>
<tr>
<td>Sonstiges</td>
<td>115.089</td>
<td>105.342</td>
</tr>
<tr>
<td>Zwischensumme</td>
<td>1.572.531</td>
<td>1.072.817</td>
</tr>
<tr>
<td>DB Energie und DB Station & Service</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DB Energie (110KV)</td>
<td>12.900</td>
<td>6.450</td>
</tr>
<tr>
<td>DB Station & Service</td>
<td>6.977</td>
<td>4.356</td>
</tr>
<tr>
<td>Zwischensumme</td>
<td>19.877</td>
<td>10.806</td>
</tr>
<tr>
<td>Gesamtsumme</td>
<td>1.592.406</td>
<td>1.083.622</td>
</tr>
<tr>
<td>Baustelleneinrichtung (10 %)</td>
<td>158.241</td>
<td>108.362</td>
</tr>
<tr>
<td>Sicherungsposten (5 %)</td>
<td>76.620</td>
<td>54.181</td>
</tr>
<tr>
<td>AP Unternehmer (5 %)</td>
<td>76.620</td>
<td>54.181</td>
</tr>
<tr>
<td>Kampfmittelsonderung (0.8 %)</td>
<td>12.739</td>
<td>8.669</td>
</tr>
<tr>
<td>Grundworb</td>
<td>68.626</td>
<td>48.298</td>
</tr>
<tr>
<td>Bausumme</td>
<td>1.993.255</td>
<td>1.357.313</td>
</tr>
<tr>
<td>Planungskosten (18 %)</td>
<td>358.738</td>
<td>244.315</td>
</tr>
<tr>
<td>Risikozuschlag (30 %)</td>
<td>597.976</td>
<td>407.194</td>
</tr>
<tr>
<td>Maßnahmen Nienburg - Wunstorf</td>
<td>156.000</td>
<td>156.000</td>
</tr>
<tr>
<td>Bausumme u. Planungskosten (netto)</td>
<td>3.106.017</td>
<td>2.164.824</td>
</tr>
</tbody>
</table>

Tabelle 4 – Kostenschätzung Variante ABS 1720

In der Kostenschätzung nicht enthalten ist die monetäre Bewertung der explizit für diese Variante entstehenden Projektrisiken. Diese sind:
Rückforderungen des Eisenbahn-Bundesamtes für Anlagen mit Restbuchwerten im Abschnitt Stelle – Lüneburg, die durch den viereiligen Ausbau dieses Streckenabschnittes neu- oder umgebaut werden müssen,

Demzufolge ebenfalls im Rahmen dieser Machbarkeitsstudie nicht bewertet werden konnten Einnahmeausfälle durch Gleissperrungen oder Mehrkosten durch Schienenersatzverkehr während der Realisierung über mehrere Jahre.

In der Tabelle 5 sind Art und Länge betroffener Schutzgebiete in der Variante ABS 1720 dargestellt.

<table>
<thead>
<tr>
<th>Schutzgebietstyp</th>
<th>Summe Variante ABS 1720 (Celle - Ashausen) [km]</th>
<th>Summe Variante ABS 1720 (Uelzen - Ashausen) [km]</th>
</tr>
</thead>
<tbody>
<tr>
<td>FFH-Gebiet</td>
<td>6,340</td>
<td>4,920</td>
</tr>
<tr>
<td>Heilquellenschutzgebiet</td>
<td>10,170</td>
<td>10,170</td>
</tr>
<tr>
<td>Landschaftsschutzgebiet</td>
<td>42,300</td>
<td>15,110</td>
</tr>
<tr>
<td>Naturschutzgebiet</td>
<td>5,300</td>
<td>4,100</td>
</tr>
<tr>
<td>Überschwemmungsschutzgebiet</td>
<td>0,500</td>
<td>0,400</td>
</tr>
<tr>
<td>Vogelschutzgebiet</td>
<td>2,940</td>
<td>0</td>
</tr>
<tr>
<td>Wasserschutzgebiet</td>
<td>31,150</td>
<td>15,510</td>
</tr>
</tbody>
</table>

Tabelle 5 – Risiken aus Schutzgebieten Variante ABS 1720

Als höchst kritisch ist anzusehen, dass alle tangierten FFH-Gebiete durch das Vorkommen prioritärer Lebensräume bzw. -arten bestimmt sind, für die nach der FFH-Richtlinie im Falle von Eingriffen besonders strenge Schutzvorschriften gelten.

Die daraus entstehenden Projektrisiken können allerdings zum derzeitigen Planungsstand noch nicht näher beschrieben werden, da hierzu genauere Datengrundlagen über das Vorhandensein der besonders kritischen Kernzonen erforderlich sind. Sie liegen zum jetzigen Zeitpunkt nicht vor.
bzw. konnten aufgrund der vorgegebenen Rahmenbedingungen (keine Behördenkontakte) nicht in die Bewertung einbezogen werden.

In Summe sind bei der Variante ABS 1720 Celle – Ashausen ca. 52.700 WE durch Schallimmissionen betroffen. Damit ergeben sich Lärmschutzwände auf einer Länge von ca. 54 km.

Für die Untervariante ABS 1720 von Uelzen bis Ashausen ergeben sich aus der Schalltechnischen Untersuchung ca. 35.200 betroffene WE. Daraus resultierend ergeben sich erforderliche Lärmschutzwände auf einer Länge von ca. 43 km.
2.5 Variante NBS Ashausen – Suderburg/Unterlüß

2.5.1 Variante NBS Ashausen – Unterlüß

Die Gesamtkosten für diese Variante belaufen sich mit oder ohne eine Südtumführung von Uelzen nach Tabelle 6 auf rund 2,6 Mrd. Euro.

<table>
<thead>
<tr>
<th>Baumaßnahmen</th>
<th>Summe ohne Umführung Uelzen TEUR</th>
<th>Summe mit Umführung Uelzen TEUR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verkehrsanlage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bahnbau</td>
<td>496.526</td>
<td>492.755</td>
</tr>
<tr>
<td>Straßenbau</td>
<td>16.901</td>
<td>21.174</td>
</tr>
<tr>
<td>Ingenieurbauwerke</td>
<td>314.470</td>
<td>316.518</td>
</tr>
<tr>
<td>Technische Ausrüstung</td>
<td>253.344</td>
<td>246.751</td>
</tr>
<tr>
<td>Landschaftsbau, Ausgleichs-, CEF- und FCS-Maßnahmen</td>
<td>170.133</td>
<td>167.191</td>
</tr>
<tr>
<td>Kabel und Leitungen Dritter</td>
<td>3.916</td>
<td>3.984</td>
</tr>
<tr>
<td>Sonstiges</td>
<td>41.292</td>
<td>35.697</td>
</tr>
<tr>
<td>Zwischensumme</td>
<td>1.296.585</td>
<td>1.286.080</td>
</tr>
<tr>
<td>DB Energie und DB Station & Service</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DB Energie (110KV)</td>
<td>52.200</td>
<td>52.200</td>
</tr>
<tr>
<td>DB Station & Service</td>
<td>11.081</td>
<td>7.812</td>
</tr>
<tr>
<td>Zwischensumme</td>
<td>63.281</td>
<td>59.812</td>
</tr>
<tr>
<td>Gesamtsumme</td>
<td>1.359.866</td>
<td>1.345.892</td>
</tr>
<tr>
<td>Baustelleneinrichtung (10 %)</td>
<td>135.987</td>
<td>134.589</td>
</tr>
<tr>
<td>Sicherungsposten (5 %)</td>
<td>67.993</td>
<td>67.295</td>
</tr>
<tr>
<td>AP Unternehmer (5 %)</td>
<td>67.993</td>
<td>67.295</td>
</tr>
<tr>
<td>Kampfmittelorder (0,8 %)</td>
<td>10.879</td>
<td>10.757</td>
</tr>
<tr>
<td>Grunderwerbung</td>
<td>16.396</td>
<td>20.191</td>
</tr>
<tr>
<td>Baussumme</td>
<td>1.659.114</td>
<td>1.646.029</td>
</tr>
<tr>
<td>Planungskosten (18 %)</td>
<td>298.640</td>
<td>296.285</td>
</tr>
<tr>
<td>Risikozuschlag (30 %)</td>
<td>497.734</td>
<td>493.809</td>
</tr>
<tr>
<td>Maßnahmen Nienburg - Wunstorf</td>
<td>156.000</td>
<td>156.000</td>
</tr>
<tr>
<td>Baussumme u. Planungskosten (netto)</td>
<td>2.611.489</td>
<td>2.592.123</td>
</tr>
</tbody>
</table>

Tabelle 6 – Kostenschätzung Variante NBS Ashausen – Unterlüß

Bei einer Südtumführung von Uelzen werden auf der Strecke 1960 im Abschnitt Uelzen (a) – Abzw Ebstorf West keine Maßnahmen in Ansatz gebracht. Es wird davon ausgegangen, dass alle Güterzüge Uelzen umfahren.

In der Tabelle 7 sind Art und Länge der betroffenen Schutzgebiete in der Variante NBS Ashausen – Unterlüß dargestellt.

<table>
<thead>
<tr>
<th>Schutzgebietstyp</th>
<th>Summe Variante NBS Ashausen – Unterlüß [km]</th>
</tr>
</thead>
<tbody>
<tr>
<td>FFH-Gebiet</td>
<td>4,250</td>
</tr>
<tr>
<td>Heilquellenschutzgebiet</td>
<td>0</td>
</tr>
<tr>
<td>Landschaftsschutzgebiet</td>
<td>30,670</td>
</tr>
<tr>
<td>Naturschutzgebiet</td>
<td>4,060</td>
</tr>
<tr>
<td>Überschwemmungsschutzgebiet</td>
<td>1,710</td>
</tr>
<tr>
<td>Vogelschutzgebiet</td>
<td>0,930</td>
</tr>
<tr>
<td>Wasserschutzgebiet</td>
<td>13,920</td>
</tr>
</tbody>
</table>

Tabelle 7 – Risiken aus Schutzgebieten Variante NBS Ashausen – Unterlüß

Als höchst kritisch ist anzusehen, dass alle tangierten FFH-Gebiete durch das Vorkommen prioritärer Lebensräume bzw. -arten bestimmt sind, für die nach der FFH-Richtlinie im Falle von Eingriffen besonders strenge Schutzvorschriften gelten.

Die daraus entstehenden Projektrisiken können allerdings zum derzeitigen Planungsstand noch nicht näher beschrieben werden, da hierzu genauere Datengrundlagen über das Vorhandensein der besonders kritischen Kernzonen erforderlich sind. Sie liegen zum jetzigen Zeitpunkt nicht vor bzw. konnten aufgrund der vorgegebenen Rahmenbedingungen (keine Behördenkontakte) nicht in die Bewertung einbezogen werden.

In Summe sind bei der Variante NBS Ashausen – Unterlüß ca. 8.000 WE durch Schallimmissionen betroffen. Durch eine Südumfahrung von Uelzen sind ca. 800 WE betroffen, dadurch entfallen im Vergleich zur Variante ohne Südumfahrung jedoch ca. 2.950 WE entlang der Strecke 1960.

Damit ergeben sich Lärmschutzwände auf einer Länge von ca. 55 km. Für eine Südumfahrung von Uelzen sind es ca. 5 km.

Bezogen auf die Umweltauswirkungen ist eine Südumfahrung von Uelzen gegenüber einem zweigleisigen Ausbau der Strecke 1960 zwischen Uelzen und dem Abzweig NBS Ashausen - Unterlüß als gleichwertig zu betrachten.
2.5.2 Variante NBS Ashausen – Suderburg

Bei der Variante NBS Ashausen – Suderburg sind gegenwärtig keine direkten Betroffenheiten mit der vorhandenen Bebauung erkennbar.

Die Gesamtkosten für diese Variante belaufen sich nach Tabelle 8 auf rund 1,8 Mrd. Euro

<table>
<thead>
<tr>
<th>Verkehrsmaßnahmen</th>
<th>Summe NBS Ashausen - Suderburg TEUR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bahnbau</td>
<td>314.387</td>
</tr>
<tr>
<td>Straßenbau</td>
<td>17.995</td>
</tr>
<tr>
<td>Ingenieurbauwerke</td>
<td>198.064</td>
</tr>
<tr>
<td>Technische Ausrüstung</td>
<td>205.979</td>
</tr>
<tr>
<td>Landschaftsbau, Ausgleichs-, CEF- und FCS-Maßnahmen</td>
<td>122.443</td>
</tr>
<tr>
<td>Kabel und Leitungen Dritter</td>
<td>3.162</td>
</tr>
<tr>
<td>Sonstiges</td>
<td>17.323</td>
</tr>
<tr>
<td>Zwischensumme</td>
<td>879.353</td>
</tr>
<tr>
<td>DB-Energie und DB Station & Service</td>
<td></td>
</tr>
<tr>
<td>DB-Energie (110KV)</td>
<td>46.200</td>
</tr>
<tr>
<td>DB Station & Service</td>
<td>1.364</td>
</tr>
<tr>
<td>Zwischensumme</td>
<td>47.564</td>
</tr>
<tr>
<td>Gesamtsumme</td>
<td>926.917</td>
</tr>
<tr>
<td>Baustelleneinrichtung (10 %)</td>
<td>92.692</td>
</tr>
<tr>
<td>Sicherungsposten (5 %)</td>
<td>46.346</td>
</tr>
<tr>
<td>AP Unternehmer (5 %)</td>
<td>46.346</td>
</tr>
<tr>
<td>Kampfmittelsonderung (0,8 %)</td>
<td>7.416</td>
</tr>
<tr>
<td>Grunderwerb</td>
<td>13.029</td>
</tr>
<tr>
<td>Bausumme</td>
<td>1.132.735</td>
</tr>
<tr>
<td>Planungskosten (18 %)</td>
<td>203.892</td>
</tr>
<tr>
<td>Risikozuschlag (30 %)</td>
<td>339.821</td>
</tr>
<tr>
<td>Maßnahmen Nienburg - Wunstorf</td>
<td>166.000</td>
</tr>
<tr>
<td>Bausumme u. Planungskosten (netto)</td>
<td>1.832.448</td>
</tr>
</tbody>
</table>

Tabelle 8 – Kostenschätzung Variante NBS Ashausen – Suderburg

In der Tabelle 9 sind Art und Länge der betroffenen Schutzgebiete in der Variante NBS Ashausen - Suderburg dargestellt.

Als höchst kritisch ist anzusehen, dass alle tangierten FFH-Gebiete durch das Vorkommen prioritärer Lebensräume bzw. -arten bestimmt sind, für die nach der FFH-Richtlinie im Falle von Eingriffen besonders strenge Schutzvorschriften gelten.

Die daraus entstehenden Projektisiken können allerdings zum derzeitigen Planungsstand noch nicht näher beschrieben werden, da hierzu genauere Datengrundlagen über das Vorhandensein der besonders kritischen Kernzonen erforderlich sind. Sie liegen zum jetzigen Zeitpunkt nicht vor bzw. konnten aufgrund der vorgegebenen Rahmenbedingungen (keine Behördenkontakte) nicht in die Bewertung einbezogen werden.
In Summe sind bei der Variante NBS Ashausen - Suderburg ca. 4.350 WE durch Schallimmissionen betroffen. Damit ergeben sich Lärmschutzwände auf einer Länge von ca. 22,5 km.

<table>
<thead>
<tr>
<th>Schutzgebietstyp</th>
<th>Summe Variante NBS Ashausen – Suderburg [km]</th>
</tr>
</thead>
<tbody>
<tr>
<td>FFH-Gebiet</td>
<td>1,910</td>
</tr>
<tr>
<td>Heilquellenschutzgebiet</td>
<td>0</td>
</tr>
<tr>
<td>Landschaftsschutzgebiet</td>
<td>12,730</td>
</tr>
<tr>
<td>Naturschutzgebiet</td>
<td>0,640</td>
</tr>
<tr>
<td>Überschwemmungsschutzgebiet</td>
<td>1,630</td>
</tr>
<tr>
<td>Vogelschutzgebiet</td>
<td>0</td>
</tr>
<tr>
<td>Wasserschutzgebiet</td>
<td>12,170</td>
</tr>
</tbody>
</table>

Tabelle 9 – Risiken aus Schutzgebieten Variante NBS Ashausen – Suderburg
2.6 Variante ABS 1960 (1-gleisig)

Die Gesamtkosten für die untersuchten Maßnahmen an der Strecke 1960 belaufen sich entsprechend der Tabelle 10 auf rund 1,7 Mrd. Euro.

Tabelle 10 – Kostenschätzung Variante ABS 1960 (1-gleisig)

<table>
<thead>
<tr>
<th>Baumaßnahmen</th>
<th>Summe ABS 1960 (1-gleisig) TEUR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verkehrsanlagen</td>
<td></td>
</tr>
<tr>
<td>Bahnbau</td>
<td>243.589</td>
</tr>
<tr>
<td>Straßenbau</td>
<td>3.281</td>
</tr>
<tr>
<td>Ingenieurbauwerke</td>
<td>215.180</td>
</tr>
<tr>
<td>Technische Ausrüstung</td>
<td>236.992</td>
</tr>
<tr>
<td>Landschaftsbau, Ausgleichs., CEF- und FCS-Maßnahmen</td>
<td>173.286</td>
</tr>
<tr>
<td>Kabel und Leitungen Dritter</td>
<td>6.152</td>
</tr>
<tr>
<td>Sonstiges</td>
<td>39.461</td>
</tr>
<tr>
<td>Zwischensumme</td>
<td>917.950</td>
</tr>
<tr>
<td>DB-Energie und DB Station & Service</td>
<td></td>
</tr>
<tr>
<td>DB-Energie (110KV)</td>
<td>24.000</td>
</tr>
<tr>
<td>DB Station & Service</td>
<td>7.345</td>
</tr>
<tr>
<td>Zwischensumme</td>
<td>31.345</td>
</tr>
<tr>
<td>Gesamtsumme</td>
<td>949.295</td>
</tr>
<tr>
<td>Baustelleneinrichtung</td>
<td>94.930</td>
</tr>
<tr>
<td>Sicherungsosten</td>
<td>47.465</td>
</tr>
<tr>
<td>AP Unternehmer</td>
<td>47.465</td>
</tr>
<tr>
<td>Kampfmittelsonderung</td>
<td>7.594</td>
</tr>
<tr>
<td>Grunderwerb</td>
<td>3.486</td>
</tr>
<tr>
<td>Bausumme</td>
<td>1.150.235</td>
</tr>
<tr>
<td>Planungskosten</td>
<td>207.042</td>
</tr>
<tr>
<td>Risikozuschlag</td>
<td>345.070</td>
</tr>
<tr>
<td>Bausumme u. Planungskosten (netto)</td>
<td>1.702.348</td>
</tr>
</tbody>
</table>

In der Tabelle 11 sind Art und Länge der betroffenen Schutzgebiete entlang der Strecke 1960 dargestellt.

Als höchst kritisch ist anzusehen, dass alle tangierten FFH-Gebiete durch das Vorkommen prioritärer Lebensräume bzw. -arten bestimmt sind, für die nach der FFH-Richtlinie im Falle von Eingriffen besonders strenge Schutzvorschriften gelten.

Die daraus entstehenden Projektrisiken können allerdings zum derzeitigen Planungsstand noch nicht näher beschrieben werden, da hierzu genauere Datengrundlagen über das Vorhandensein der besonders kritischen Kernzonen erforderlich sind. Sie liegen zum jetzigen Zeitpunkt nicht vor.
bzw. konnten aufgrund der vorgegebenen Rahmenbedingungen (keine Behördenkontakte) nicht in die Bewertung einbezogen werden.

<table>
<thead>
<tr>
<th>Schutzgebietstyp</th>
<th>Summe ABS 1960 (1-gleisig) [km]</th>
</tr>
</thead>
<tbody>
<tr>
<td>FFH-Gebiet</td>
<td>4,300</td>
</tr>
<tr>
<td>Heilquellenschutzgebiet</td>
<td>0</td>
</tr>
<tr>
<td>Landschaftsschutzgebiet</td>
<td>16,960</td>
</tr>
<tr>
<td>Naturschutzgebiet</td>
<td>1,820</td>
</tr>
<tr>
<td>Überschwemmungsschutzgebiet</td>
<td>0,620</td>
</tr>
<tr>
<td>Vogelschutzgebiet</td>
<td>0</td>
</tr>
<tr>
<td>Wasserschutzgebiet</td>
<td>7,230</td>
</tr>
</tbody>
</table>

Tabelle 11 – Risiken aus Schutzgebieten Variante ABS 1960 (1-gleisig)

In Summe sind bei der Ertüchtigung der Strecke 1960 ca. 25.100 WE durch Schallimmissionen betroffen. Damit ergeben sich Lärmschutzwände auf einer Länge von ca. 65,0 km.
2.7 Zusammenfassung der Ergebnisse

In der nachfolgenden Tabelle 12 sind die wichtigsten Ergebnisse der fünf untersuchten Varianten (zzgl. der Untervariante ABS 1720) in Zahlen gegenübergestellt.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>~ 3,2 Mrd.</td>
<td>~ 3,0 Mrd.</td>
<td>~ 2,2 Mrd.</td>
<td>~ 2,5 Mrd.</td>
<td>~ 1,8 Mrd.</td>
<td>~ 1,7 Mrd.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>~ 80,7 km</td>
<td>~ 98,7 km</td>
<td>~ 50,2 km</td>
<td>~ 55,5 km</td>
<td>~ 29,1 km</td>
<td>~ 31,0 km</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>~ 25.200</td>
<td>~ 52.700</td>
<td>~ 35.200</td>
<td>~ 8.000</td>
<td>~ 4.350</td>
<td>~ 25.100</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>~ 65 km</td>
<td>~ 54 km</td>
<td>~ 43 km</td>
<td>~ 55 km</td>
<td>~ 23 km</td>
<td>~ 65 km</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 12 – Zusammenfassung der Ergebnisse aller Varianten

2.8 Variantenvergleich

Die im Rahmen der Machbarkeitsstudie betrachteten Varianten

- SGV-Y,
- ABS 1720 Celle – Ashausen bzw. Uelzen – Ashausen
- NBS Ashausen – Suderburg/Unterlüß sowie
- ABS 1960 (1-gleisig)

sind grundsätzlich nicht vergleichbar, weil sie im Ergebnis unterschiedliche verkehrliche Wirkungen erzielen.
3 Allgemeine Grundlagen für die technische Planung

3.1 Variante SGV-Y

3.1.1 Verkehrsanlagen

Für die NBS wird der grundsätzliche Trassenverlauf unter folgenden Prämisen festgelegt:

- möglichst keine direkten Betroffenheiten vorhandener Bebauung (Wohnen, Gewerbe, Industrie),
- Minimierung der indirekten Betroffenheiten (Schall),
- Minimierung von direkten Konflikten mit Schutzgebieten und
- möglichst enge Bündelung mit der BAB 7.

Für die Bündelung mit der BAB 7 wird ein Mindestabstand von 40 Metern zugrunde gelegt. Dieser Mindestabstand wird auch zu den Autobahnanschlussstellen eingehalten.

Gemäß Bundesfernstraßengesetz (FStrG) vom 06.08.1953, zuletzt geändert am 31.07.2009, dürfen entlang von Bundesautobahnen in einer Entfernung bis zu 40 m Hochbauten, Aufschüttungen oder Abgrabungen größerer Umfangs nicht ausgeführt werden. Diese Bauverbotszone ist im § 9 (1) verankert. Im Bereich zwischen 40 m und 100 m bedürfen bauliche Anlagen einer Bauge- nehmigung oder einer Zustimmung der obersten Landesstraßenbaubehörde (Baubeschränkungszone nach § 9 (2)). Diese Abstandsmaße beziehen sich jeweils auf den äußeren Rand der befestigten Fahrbahn. Autobahnauf- bzw. Ausfahrten sind Bestandteil der Autobahn, somit gelten die Bestimmungen des § 9 (1) und (2) entsprechend. Gemäß § 9 (8) darf die oberste Landesstraßenbaubehörde im Einzelfall Ausnahmen von dem Verbot im Absatz 1 zulassen.

Im Rahmen dieser Machbarkeitsstudie ist allerdings kein Benehmen mit der obersten Landesstraßenbaubehörde Niedersachsens hergestellt worden. Diesbezüglich gilt für die Studie die Bauverbotszone nach § 9 (1). Des Weiteren wird davon ausgegangen, dass Genehmigungen zur Errichtung von baulichen Anlagen innerhalb der Baubeschränkungszone (§ 9 (2)) erteilt werden. Hieraus resultierend beträgt innerhalb dieser Machbarkeitsstudie für die Trassenbündelung der Abstand BAB 7 – Planungsgrenze NBS mindestens 40 m.

Alle Ausfädelungen und Anbindungen an die Bestandsstrecken werden höhenfrei geplant.

Es werden keine neuen Bahnübergänge gebaut. Vorhandene Bahnübergänge werden je nach Verkehrssituation durch Brückenbauwerke ersetzt, angepasst oder aufgelassen.

Charakteristische Trassierungsparameter:

- Mindestradius 1.200 m, maximaler Radius 10.000 m
- Maximale Überhöhung 140 mm
- Maximaler Überhöhungsfehlbetrag 115 mm
- Maximale Längsneigung 12,5 %

Der zweigleisige Ausbau der Strecke 1960 ist weitestgehend im Bereich des vorhandenen Bahnkörpers geplant. Aufgrund des größeren Gleisabstandes von 4,00 m, der Anordnung von Kabelführungssystemen und ggf. von Lärmschutzwänden, müssen die vorhandenen Erdbauwerke (Einschnitte und Dämme) erweitert werden. Erfahrungsgemäß verfügen Eisenbahndämme dieses Alters nicht über die notwendige Tragfähigkeit für den hier geplanten Ausbau mit einer Entwurfsge schwindigkeit von 160 km/h und einer Achslast von 25 t, so dass in diesem Bereich generell Maßnahmen zur Erhöhung der Tragfähigkeit vorgesehen werden.

Zum Erzielen der Streckengeschwindigkeit ohne erhebliche Abweichungen von der Bestandstrasse wird der Ermessensbereich der Trassierungsparameter ausgenutzt. Dies zeigt sich bei kleinen Radien mit größerer Überhöhung und größeren Überhöhungsfehlbeträgen.

Charakteristische Trassierungsparameter:
- Mindestradius 750 m, maximaler Radius 8.500 m
- Maximale Überhöhung 100 mm
- Maximaler Überhöhungsfehlbetrag 126 mm
- Keine Veränderung der Längsneigung des Bestands

Es werden keine neuen Bahnübergänge gebaut. Vorhandene Bahnübergänge werden je nach Verkehrssituation durch Brückenbauwerke ersetzt, angepasst oder aufgelassen.

3.1.2 Ingenieurbauwerke

Entsprechend der Trassierung der NBS ergeben sich Kreuzungspunkte mit den Verkehrswegen der Bahn / Wasser / Straße, so dass Ingenieurbauwerke zu deren Überwindung erforderlich werden. Planungsgrundlage für die Anordnungen der Ingenieurbauwerke für die NBS bilden topografische Karten und Luftbildaufnahmen.

Die Festlegung der Bauwerksabmessungen (NBS) ist abhängig von der Breite der zu überquerenden Verkehrswegen. Im Zuge der Machbarkeitsstudie werden Breiten anhand der Lagepläne, Karten und Luftbilder abgeschätzt bzw. entsprechend der Straßenkategorisierung (Bundes-, Land-, Kreisstraßen, Wirtschaftswege) angesetzt.

Im Zuge der Trassierung der NBS erfolgt die Erfassung von Durchlässen pauschal unter der Annahme, dass je Kilometer ein Durchlass angeordnet wird. Größere erkennbare Gewässer wurden als Eisenbahnüberführungen berücksichtigt.

Für die Neubauten der NBS-Trasse werden die betrieblichen Vorgaben der Streckenkategorie D4 plus SSW zuzüglich 25 t Achslast, 10 t Meterlast umgesetzt. Für den Ausbau der Strecke 1960 werden zwar erste Einschätzungen des Fachverantwortlichen für Brückenbelastbarkeit berücksichtigt, jedoch wird darauf hingewiesen, dass infolge der Lasterhöhung Nachrechnungen und Subst-

Für bestehende Bauwerke auf der Strecke 1960 und im Bereich Celle werden die anhand der Bauwerkslisten ermittelten bzw. der aus den Lageplänen abgeschätzten lichten Querschnitte berücksichtigt. Verlängerungen und Erweiterungen bestehender Bauwerke, die sich aus der geometrischen Notwendigkeit (ausreichende Breite für den 2-gleisigen Ausbau) ergeben, werden anhand der Lagepläne eingeschätzt und abgegriffen. Es werden die Mindestabstände der Geländer zur Gleisachse unter Berücksichtigung des Gefahrenbereiches und des Sicherheitsraums für die Entwurfsgeschwindigkeit $120 \leq v_e \leq 160$ gemäß der Ril 804 zu Grunde gelegt.

Die Kreuzungsbeteiligten wurden in die Untersuchung nicht einbezogen, so dass ggf. zu berücksichtigende Aufweitungsverlangen fachlich sowie kostentechnisch nicht berücksichtigt werden konnten. In die weiteren Planungsphasen sind die Kreuzungsbeteiligten einzubeziehen.

3.1.3 Anlagen der Leit- und Sicherungstechnik

Die Variante SGV-Y der vorliegenden Machbarkeitsstudie beinhaltet den kompletten Neubau der Signalanlagen im Bereich der NBS und der Strecke 1960 im Abschnitt (Langwedel-) Planungsgrenze DB ProjektBau GmbH, km 71,3+00 - Einbindung NBS.

Grundlage für die Betrachtung der Anlagen der Leit- und Sicherungstechnik waren die betrieblichen Vorgaben (Stand: 16.12.2011) und die neueste z.Z. verfügbare ESTW-Technik, firmenunabhängig.

Die in den betrieblichen Vorgaben aufgeführte Blockteilung von 1,5 km und Verdichtung auf 1,0 km an Ein- und Ausfädelungen wurde auch auf den Gleiswechselbetrieb angewendet.

Als Signalsystem wurden Ks-Signale mit PZB vorgesehen, zur Gleisfreimeldung Achszähler.

Kabeltiefbaukosten wurden berücksichtigt.
3.1.4 Oberleitungsanlage

Gegenstand der Variante SGV-Y der vorliegenden Machbarkeitsstudie ist der komplette Neubau der Oberleitungsanlage (15 kV; 16,7 Hz) im Bereich der NBS und der Strecke 1960 im Abschnitt (Langwedel-) Planungsgrenze DB ProjektBau GmbH, km 71,3+00 - Einbindung NBS. Weiterhin werden die Einbindungen der NBS in die Bestandsoberleitungsanlage der Strecke 1280 (ca. km 12,0) und der Strecke 1720 (Bahnhof Celle) betrachtet.

Die neuen Oberleitungsanlagen werden für eine Befahrbarkeit mit Eurowippe geplant.

Anpassung von Kettenwerken und anderen Anlagen der Bestandsoberleitung sind dabei nur soweit vorgesehen, wie für die Errichtung der Neuanlagen unbedingt erforderlich ist. Nicht mehr benötigte Anlagen der Oberleitung werden soweit zurückgebaut, dass die Forderungen der Verkehrssicherungspflicht erfüllt sind.

3.1.5 Elektrotechnische Anlagen für Licht- und Kraftstrom

In Rahmen des Projektes ESTW Celle (geplanter Realisierungszeitraum Juli 2013 – September 2015) werden im Zusammenhang mit der durchgängigen Erneuerung der Sicherungstechnik durch ESTW-Technik folgende Maßnahmen an den Starkstromanlagen des Bahnhofs Celle durchgeführt:

- Ertüchtigung der Trafostation (Umtausch des Transformators),
- Erneuerung der Weichenheizanlagen,
- Anpassung der Energieversorgung der Gleisfeldbeleuchtungsanlagen.

Diese Planung wurde bei der Durchführung der Machbarkeitsstudie berücksichtigt und als Bestand vorausgesetzt.

3.2 Variante ABS 1720

3.2.1 Verkehrsanlagen

Entsprechend den betrieblichen Vorgaben wird die Trassierung für die neuen Gleise und Weichen vorgenommen. Weitere Randbedingungen sind:

- Lage der vorhandenen Gleise und Weichen (Gleisnetzdaten, Ivl- und Ivmg-Pläne)
- Planerische Vorgaben aus anderen korrespondierenden Baumaßnahmen (neue Gleise, Weichen und Bahnsteige bzw. Rückbau von Anlagen)
- Angestrebte Geschwindigkeiten für die neuen Gleise bzw. Weichenverbindungen

In der Machbarkeitsstudie wird nachgewiesen, dass die benötigten zusätzlichen Gleise und Weichenverbindungen prinzipiell realisierbar sind.

Die Anordnung des 3. und/oder 4. Gleises berücksichtigt die vorhandenen Oberleitungsmaste und ggf. die Anordnung von Lärmschutzwänden. Damit ergibt sich je nach Entwurfsgeschwindigkeit ein Gleisabstand von 7,80 m bzw. 8,10 m (vgl. Regelquerschnitt im Anhang 3 zum Bericht).

Die Trassierungsparameter ergeben sich aus der weitest gehenden Parallellage aus dem Bestand der Strecke 1720.

3.2.2 Ingenieurbauwerke

Im Rahmen der Untersuchung des Ausbaus der Bestandsstrecke 1720 werden die bestehenden Gleisanlagen in den einzelnen Streckenabschnitten um ein bzw. zwei Gleise ergänzt. Die Variante beinhaltet im Wesentlichen den Ausbau der Streckenabschnitte:

- Celle - Uelzen von zwei auf drei Gleise,
- Uelzen - Lüneburg von zwei auf vier Gleise und
- Lüneburg - Stelle von drei auf vier Gleise.

Grundlage für die Untersuchung möglicher Erweiterungen vorhandener Ingenieurbauwerke bzw. der Anordnung von Neubauwerken bilden vorhandene IVL-Streckenpläne, Bauwerkslisten für die Bestandsstrecke 1720 sowie Luftbildauszüge.

Für alle bestehenden Bauwerke gilt, dass keine Bestandsunterlagen und Regelbegutachtungen vorlagen. Untersuchungen bezüglich des Bauwerkszustandes wurden nicht durchgeführt. Im Rah- men der Machbarkeitsstudie wird davon ausgegangen, dass die Bauwerke in der Lage sind, die
aus den betrieblichen Vorgaben (Streckenklasse D plus SSW zzgl. 25 t Achslast und 10 t Meterlast) entstehenden zusätzlichen Belastungen aufzunehmen.

In den weiteren Planungsphasen sollten Regelgutachten und ggf. Bauwerkssubstanzuntersuchungen sowie vereinzelte Nachrechnungen in Abhängigkeit der Ergebnisse vorher genannter Daten als Planungsgrundlage erstellt werden.

Anhand geometrischer Randbedingungen wird eine Erweiterung / Verlängerung der bestehenden Bauwerke erfasst. In Abhängigkeit der vorhandenen Angaben zum Bauwerksalter werden stellenweise Bauwerke aufgrund ihres hohen Bauwerksalters (> 100 Jahre) durch einen Ersatzneubau ersetzt.

Die Kreuzungsbeteiligten wurden in die Untersuchung nicht einbezogen, so dass ggf. zu berücksichtigende Aufweitungsverlangen fachlich sowie kostentechnisch nicht berücksichtigt werden konnten. In die weiteren Planungsphasen sind die Kreuzungsbeteiligten einzubeziehen.

In den Bereichen Celle, Uelzen und Lüneburg kreuzen sich diverse Bahntrassen aufgrund der Einfädelung in bestehende Gleisanlagen. Bei den erforderlichen Kreuzungsbauwerken werden entsprechend den Vorgaben der Ril 800.0110 Neigungen der Gradiente von 12,5 ‰ für die Ermittlung der Rampenlänge herangezogen und dementsprechend Stützbauwerke für die Bahndämme bzw. Trogbauwerke berücksichtigt.

In innerstädtischen Bereichen und gleisnaher Bebauungsflächen werden Stützbauwerke als Spundwände sowie als Winkelstützwände zur Abfangung der Bahndämme bzw. zur Abfangung der Bebauungsflächen erforderlich.

3.2.3 Anlagen der Leit- und Sicherungstechnik

Grundlage für die Betrachtung der Anlagen der Leit- und Sicherungstechnik waren die betrieblichen Vorgaben (Stand: 16.12.2011) und die neueste z.Z. verfügbare ESTW-Technik, firmenunabhängig.

Entsprechend der Aufgabenstellung erhielten die neuen Streckengleise eine Blockteilung von 1,5 km.

Als Signalsystem wurden Ks-Signale mit PZB vorgesehen, zur Gleisfreimeldung Achszähler.
Für die Erweiterung der LST-Anlagen wurden neue ESTW-Module in den Bahnhöfen vorgesehen. Die Bedienung der Module erfolgt aus der BZ Hannover.

Kabelliefkbaukosten wurden berücksichtigt.

3.2.4 Oberleitungsanlage

Gegenstand der Variante ABS 1720 der vorliegenden Machbarkeitsstudie ist der komplette Neubau der Oberleitungsanlage (15 kV; 16,7 Hz) im Bereich der neu zu errichtenden Gleise auf der Strecke 1720 im Abschnitt Celle (e) – Ashausen (e).

Für die Variante ABS 1720 (Ausbau Strecke 1720) ist daher ein kompletter Umbau (überwiegend sogar Neubau) der bestehenden Oberleitungsanlage für eine Befahrung mit Eurowippe erforderlich.

3.2.5 Elektrotechnische Anlagen für Licht- und Kraftstrom

In Rahmen des Projektes ESTW Celle werden im Zusammenhang mit der durchgängigen Erneuerung der Sicherungstechnik durch ESTW-Technik folgende Maßnahmen an den Starkstromanlagen der Bahnhöfe dieses Streckenabschnittes durchgeführt:

- Erneuerung der Energieversorgung,
- Erneuerung der Weichenheizanlagen,
- Erneuerung der Beleuchtungsanlagen der Bahnsteige,
- Anpassung der Energieversorgung der Gleisfeldbeleuchtungsanlagen.

Diese Planung wurde bei der Durchführung der Machbarkeitsstudie berücksichtigt und als Bestand vorausgesetzt.

Der Streckenabschnitt Lüneburg - Ashausen wurde im Rahmen der Maßnahme des Anti-Stau-Programms des Bundes auf drei Gleise ausgebaut und mit ESTW-Technik ausgerüstet. Dabei wurden in den Bahnhöfen Bardowick, Radbruch, Winsen und Ashausen auch die Bahnsteige komplett umgebaut. In Folge dieser Maßnahmen wurden folgende Arbeiten an den Starkstromanlagen der Bahnhöfe dieses Streckenabschnittes durchgeführt:

- Erneuerung der Energieversorgung,
- Erneuerung der Weichenheizanlagen,
- Erneuerung der Beleuchtungsanlagen der Bahnsteige.

Diese Planung wurde bei der Durchführung der Machbarkeitsstudie berücksichtigt und als Bestand vorausgesetzt.
3.3 Variante NBS Ashausen – Suderburg/Unterlüß

3.3.1 Variante NBS Ashausen – Unterlüß

Verkehrsanlagen

Die Trassierung der neuen Gleise und Weichen folgt den betrieblichen Vorgaben. Weitere Randbedingungen sind:

- Lage vorhandener Gleise und Weichen (Gleisnetzdaten, Ivl- und Ivmg-Pläne) an den Anknüpfpunkten zum Bestand
- Planerische Vorgaben bzw. neu errichteter Bestand aus anderen korrespondierenden Baumaßnahmen (neue Gleise, Weichen und Bahnsteige bzw. Rückbau von Anlagen)
- Angestrebte Geschwindigkeiten für die neuen Gleise bzw. Weichenverbindungen

Für die NBS wird der grundsätzliche Trassenverlauf unter folgenden Prämissen festgelegt:

- möglichst gestreckte, der jeweiligen Streckengeschwindigkeit entsprechende Linienführung
- möglichst keine direkten Betroffenheiten vorhandener Bebauung (Wohnen, Gewerbe, Industrie)
- Minimierung der indirekten Betroffenheiten (Schall)
- Minimierung von direkten Konflikten mit Schutzgebieten

Die NBS Ashausen – Unterlüß ist ca. 64 km lang. Entsprechend der Streckengeschwindigkeit handelt es sich um eine Strecke der Kategorie P300. Bezüglich der betrieblichen Vorgaben und der Mischverkehrsnutzung wird die Infrastruktur entsprechend dem Streckenstandards M230 mit folgenden Betriebsstellen geplant:

- km 0 = km 73 (Str. 1720): Bf Unterlüß (mit Anpassung des Bestands)
- km 12: Überleitstelle (ÜSt) Dreilingen
- km 24: Überholbahnhof (Übf) Wriedel einschl. Verbindungskurven zur Strecke 1960
- km 31: ÜSt Tellmer
- km 40: Übf Wetzen
- km 54: ÜSt Bahldorf
- km 64 = km 155 (Str. 1720): Bf Ashausen (mit Anpassung des Bestands)

Die Trassierung wurde entsprechend der Entwurfs- bzw. Ermessensbereich der Ril 800, Ausnahmewerte wurden nicht in Anspruch genommen. Die Radien und Überhöhung wurden mit Überhöhungsfehlbeträgen von im Mittel 80 mm geplant.
Charakteristische Trassierungsparameter:

- Mindestradius 2720 m für 250 km/h südlich Ashausen, maximaler Radius 15000 m
- Maximale Überhöhung 140 mm
- Maximaler Überhöhungsfehlbetrag 130 mm
- Maximale Längsneigung 12,5 %

Die Anbindung der NBS Südumfahrung Uelzen an die Bestandsstrecken 1960 und 6899 wurde mit Weichen für v=100 km/h geplant. Bei der momentan eingleisigen Strecke 6899 Richtung Stendal wurde für die Anbindung vom zweigleisigen Zielzustand ausgegangen.

Entsprechend der Streckenkategorie G 120 für die Strecke 6899, die NBS Südumfahrung Uelzen und die Strecke 1960 sind in Abständen von maximal 20 km Überleitstellen anzuordnen. In Richtung Stendal liegt die nächste Überleitung im Bf Wieren bei ca. km 90. Da der Abstand von Wieren über den Abzweig der NBS Südumfahrung bis zur Anbindung an die Strecke 1960 bzw. die NBS Ashausen - Unterlüß etwa 30 km beträgt wurde am Abzweig der NBS Südumfahrung aus der Strecke 6899 eine Überleitstelle angeordnet.

Bei der Kostenschätzung wird auch für die Gleise von Schotteroberbau ausgegangen. Die Ausstattung entsprechend der Streckengeschwindigkeit v>230 km/h mit B90-Schwellen und den Mehrmengen für Vorkopf-Schotter und Schwellenaufleger wurde mit einem Zuschlagsfaktor berücksichtigt. Abzweige in Überholgleise und Überleitstellen wurden für 100 km/h (NBS) bzw. 60 km/h (Strecken G 120) geplant. Alle Weichen, die mit v>230 km/h befahren werden, sind mit federnd beweglichen Herzstücken ausgerüstet.

Der zweigleisige Ausbau der Strecke 1960 und die NBS Südumfahrung Uelzen sind entsprechend der Streckenkategorie G 120 für eine Leitgeschwindigkeit von 160 km/h geplant. Die Trassierung der Strecke 1960 folgt weitestgehend der vorhandenen Gleislage, so dass im Regelfall die durch den vergrößerten Gleisabstand sowie die erforderlichen Randwege, Kabelkanäle, Entwässerungsanlagen bzw. Lärmschutzwände erforderliche Aufweitung des vorhandenen Bahnkörpers minimiert wird.

Gleichwohl ist davon auszugehen, dass der vorhandene Unterbau, insbesondere in Dammabschnitten, nicht über die für die höhere Geschwindigkeit und Achslast erforderliche Tragfähigkeit verfügt. Entsprechende Erüchtigungsmaßnahmen sind in der Kostenschätzung berücksichtigt.

Es werden keine neuen Bahnübergänge gebaut. Vorhandene Bahnübergänge werden je nach Verkehrssituation durch Brückenbauwerke ersetzt, angepasst oder aufgelassen.

Ingenieurbauwerke

Entsprechend des gewählten Trassenverlaufs der NBS Ashausen - Unterlüß sowie der Südumfahrung Uelzen mit Anschluss an die Strecke 6899 ergeben sich Kreuzungspunkte mit weiteren öffentlichen Verkehrswege wie der Bahn, der Wasserstraßen und Straßen sowie Feld- und Wirtschaftswegen. Für die Querung der Hindernisse werden Ingenieurbauwerke erforderlich. Pla-
Die Festlegung der Bauwerksabmessungen für die NBS Ashausen - Unterlüß und die Südumfahrung ist abhängig von der Breite der zu überquerenden Verkehrswege. Im Zuge der Machbarkeitsstudie werden die Breiten anhand der Lagepläne, Karten und Luftbilder abgeschätzt bzw. entsprechend der Straßenkategorisierung (Bundes-, Land-, Kreisstraßen, Wirtschaftswege) angesetzt. Die Kreuzungsbeteiligten wurden in die Untersuchung nicht einbezogen.

Die Erfassung von Durchlässen erfolgt für die Trasse der NBS Ashausen - Unterlüß der Abzweigung zur Strecke 1960 und für die Südumfahrung pauschal unter der Annahme, dass je Kilometer ein Durchlass angeordnet wird. Größere erkennbare Gewässer, z.B. größere Bachläufe, wurden separat als Eisenbahnüberführungen berücksichtigt.

Für die Neubauten der Südumfahrung Uelzen und der NBS Ashausen - Unterlüß werden die betrieblichen Vorgaben der Streckenklasse D4 plus SSW zuzüglich 25 t Achslast, 10 t Meterlast umgesetzt. Diese gelten ebenfalls für den Ausbau der Strecke 1960 zwischen Uelzen und dem Abzweig zur NBS.

Für bestehende Bauwerke auf der Strecke 1960 und punktuell im Bereich Celle werden die anhand der Bauwerkslisten ermittelten bzw. der aus den Lageplänen abgeschätzten lichten Querschnitte berücksichtigt. Verlängerungen und Erweiterungen bestehender Bauwerke, die sich aus der geometrischen Notwendigkeit (ausreichende Breite für den 2-gleisigen Ausbau) ergeben, werden anhand der Lagepläne eingeschätzt und abgegriffen. Es werden die Mindestabstände der Gelände zur Gleischachse unter Berücksichtigung des Gefahrenbereiches und des Sicherheitsraums für die Entwurfsgeschwindigkeit $120 \leq v_e \leq 160$ gemäß der Ril 804 zu Grunde gelegt.

Die Kreuzungsbeteiligten wurden in die Untersuchungen zum Ausbau der Bestandstrecke 1960 nicht einbezogen, so dass ggf. zu berücksichtigende Aufweitungsverlangen fachlich sowie kosten-
technisch nicht berücksichtigt werden konnten. In die weiteren Planungsphasen sind die Kreuzungsbeteiligten einzubeziehen.

Anlagen der Leit- und Sicherungstechnik

Die NBS Unterlüß – Ashausen beinhaltet den kompletten Neubau der Strecke einschließlich der Signalanlagen.

Für alle o. g. Streckenabschnitten wurden firmenneutralen ESTW-Module nach der z. Z. maximal möglichen Stellentfernung, insbesondere für Weichen an den Überleit-, Abzweigstellen und Bahnhöfen vorgesehen. Insgesamt sind neun neue ESTW-Module erforderlich. Die Bedienung der Module erfolgt aus der BZ Hannover, die dafür erweitert werden muss.

Als Signalsystem wurden Ks-Signale mit PZB vorgesehen, zur Gleisfreimeldung Achszähler.

Oberleitungsanlage

Gegenstand der hier betrachteten Variante der Machbarkeitsstudie ist der komplette Neubau der Oberleitungsanlage (15 kV; 16,7 Hz) im Bereich der geplanten NBS zwischen den Bahnhöfen Unterlüß und Ashausen sowie auf der Strecke 1960 im Abschnitt zwischen Uelzen und Ebstorf West.

Weiterhin werden die Einbindungen der NBS in die Bestandsoberleitungsanlage der Strecke 1720 (Bahnhöfe Unterlüß und Ashauen) betrachtet.

Die neuen Oberleitungsanlagen werden für eine Befahrbarkeit mit DB- und Eurowippe geplant.

Elektrotechnische Anlagen für Licht- und Kraftstrom

Bf Unterlüß:

In Rahmen des Projektes ESTW Celle (geplanter Realisierungszeitraum Juli 2013 – September 2015) werden im Zusammenhang mit der durchgängigen Erneuerung der Sicherungstechnik durch ESTW-Technik folgende Maßnahmen an den Starkstromanlagen dieses Bahnhofes durchgeführt:

- Erneuerung der Energieversorgung,
- Erneuerung der Weichenheizanlagen,
- Neubau der Beleuchtungsanlagen der neu zu errichtenden Bahnsteige.

Diese Planung wurde bei der Durchführung der Machbarkeitsstudie berücksichtigt und als Bestand vorausgesetzt.
Bf Ashausen:
Der Streckenabschnitt Lüneburg - Ashausen wurde im Rahmen der Maßnahme des Anti-Stau-Programms des Bundes auf drei Gleise ausgebaut und mit ESTW-Technik ausgerüstet. Dabei wurden im Bahnhof Ashausen auch die Bahnsteige komplett umgebaut. In Folge dieser Maßnahmen wurden folgende Arbeiten an den Starkstromanlagen des Bahnhofs durchgeführt:

- Erneuerung der Energieversorgung,
- Erneuerung der Weichenheizanlagen,

Neubau der Beleuchtungsanlagen der neu zu errichtenden Bahnsteige.

Bf Uelzen:

Bf Ebstorf:

Freie Strecke:
Die technisch gesicherten Bahnübergangsanlagen besitzen zur Versorgung der Schrankenantriebe und Lichtzeichen ebenfalls eigene Hausanschlüsse. Größtenteils sind die Bahnübergänge unbeleuchtet. An den bereits aufgelassenen Personenverkehrsstationen sind die elektrotechnischen Anlagen bereits ersatzlos zurückgebaut.

3.3.2 Variante NBS Ashausen - Suderburg

Verkehrsanlagen
Die grundsätzlichen Zwangspunkte, die betrieblichen Vorgaben und die Trassierungsparameter der NBS Ashauen – Suderburg entsprechend den Parametern der NBS Ashauen – Unterlüß. Die Erläuterungen des Abschnitts 3.3.1 gelten auch hier.

Durch die unterschiedliche Trassenlage und die kleinere Streckenlänge ergeben sich folgende Betriebsstellen im Streckenverlauf:

- km 0 = km 85 (Str. 1720): Bf Suderburg (mit Anpassung des Bestands)
- km 14: Überholbahnhof (Übf) Westerweyhe-Nord
- km 24: ÜSt Velgen-Nord
- km 38: Übf Südergellersen
- km 49,5: ÜSt Bahldorf
- km 59 = km 155 (Str. 1720): Bf Ashausen (mit Anpassung des Bestands)
Ingenieurbauwerke

Die allgemeinen Grundlagen entsprechen denen des Abschnittes 3.3.1 der NBS Ashausen - Unterlüß.

Anlagen der Leit- und Sicherungstechnik

Die NBS Ashausen - Suderburg beinhaltet den kompletten Neubau der Strecke einschließlich der Signalanlagen.

Für alle o. g. Streckenabschnitten wurden firmenneutralen ESTW-Module nach der z. Z. maximal möglichen Stellentfernung, insbesondere für Weichen an den Überleit-, Abzweigstellen und Bahnhöfen vorgesehen. Insgesamt sind vier neue ESTW-Module erforderlich. Die Bedienung der Module erfolgt aus der BZ Hannover, die dafür erweitert werden muss.

Als Signalsystem wurden Ks-Signale mit PZB vorgesehen, zur Gleisfreimeldung Achszähler.

Oberleitungsanlage

Gegenstand der hier betrachteten Variante der Machbarkeitsstudie ist der komplette Neubau der Oberleitungsanlage (15 kV; 16,7 Hz) im Bereich der geplanten NBS zwischen den Bahnhöfen Suderburg und Ashausen.

Weiterhin werden die Einbindungen der NBS in die Bestandsoberleitungsanlage der Strecke 1720 (Bahnhöfe Suderburg und Ashausen) betrachtet.

Anpassung von Kettenwerken und anderen Anlagen der Bestandsoberleitung sind dabei nur soweit vorgesehen, wie für die Errichtung der Neuanlagen unbedingt erforderlich ist. Nicht mehr benötigte Anlagen der Oberleitung werden soweit zurückgebaut, dass die Forderungen der Verkehrssicherungspflicht erfüllt sind.

Die neuen Oberleitungsanlagen werden für eine Befahrbarkeit mit DB- und Eurowippe geplant.

Elektrotechnische Anlagen für Licht- und Kraftstrom

Bf Suderburg:

In Rahmen des Projektes ESTW Celle (geplanter Realisierungszeitraum Juli 2013 - September 2015) werden im Zusammenhang mit der durchgängigen Erneuerung der Sicherungstechnik durch ESTW-Technik folgende Maßnahmen an den Starkstromanlagen dieses Bahnhofes durchgeführt:

- Erneuerung der Energieversorgung,
- Erneuerung der Weichenheizanlagen,
- Neubau der Beleuchtungsanlagen der neu zu errichtenden Bahnsteige.

Diese Planung wurde bei der Durchführung der Machbarkeitsstudie berücksichtigt und als Bestand vorausgesetzt.
Bf Ashausen:

Der Streckenabschnitt Lüneburg - Ashausen wurde im Rahmen der Maßnahme des Anti-Stau-Programms des Bundes auf drei Gleise ausgebaut und mit ESTW-Technik ausgerüstet. Dabei wurden im Bahnhof Ashausen auch die Bahnsteige komplett umgebaut. In Folge dieser Maßnahmen wurden folgende Arbeiten an den Starkstromanlagen des Bahnhofs durchgeführt:

- Erneuerung der Energieversorgung,
- Erneuerung der Weichenheizanlagen,
- Neubau der Beleuchtungsanlagen der neu zu errichtenden Bahnsteige.

3.4 Variante ABS 1960 (1-gleisig)

3.4.1 Verkehrsanlagen

Gleichwohl ist davon auszugehen, dass der vorhandene Unterbau, insbesondere in Dammabschnitten, nicht über die für die höhere Geschwindigkeit und Achslast erforderliche Tragfähigkeit verfügt. Entsprechende Ertüchtigungsmaßnahmen sind in der Kostenschätzung berücksichtigt.

Dies kann wie folgt begründet werden:

Die Ril 836.7001 „Bewertung von bestehenden geotechnischen Bauwerken“ definiert in Abs. 2 die Grundsätze zur Nutzung von bestehenden Bauwerken:

1. Wenn ein Erdbauwerk in Gebrauch ist, dabei schadenfrei geblieben ist, nach Modul 836.8001 instand gehalten wird und die künftigen Beanspruchungen nicht höher als die bisherigen sind, darf davon ausgegangen werden, dass es für die weitere Nutzung ausreichend standsicher und ausreichend gebrauchstauglich ist.

2. Werden während der Nutzung eines geotechnischen Bauwerks Veränderungen des Zustandes, die auf eine Einschränkung der Tragfähigkeit oder Gebrauchstauglichkeit hinweist...

Grundsätzlich unterstellt die Ril 836, dass ein schadenfreies, planmäßig instandgehaltenes Erdbauwerk für die weitere unveränderte Nutzung gebrauchstauglich ist. Im absehbaren oder auftretenden Schadensfall sind die Schäden zu dokumentieren und entsprechende Maßnahmen einzuleiten.

In Abs. 3 ist die Erhöhung der Belastung aus dem Eisenbahnverkehr definiert:

(2) Ein bestehendes geotechnisches Bauwerk darf höhere Belastungen durch Eisenbahnverkehr erhalten, wenn die Bedingungen des Abs. 2(1) eingehalten sind und die Auswirkungen der höheren Belastungen auf die Tragfähigkeit und auf die Gebrauchstauglichkeit nach den folgenden Regelungen durch einen Gutachter nach Abs. 1(2) dieses Moduls geotechnisch bewertet und als zulässig bestätigt wurden, bzw. entsprechende Nachweise geführt wurden.

Bei der Erhöhung der Belastung (Streckengeschwindigkeiten und/oder Radsatzlasten) sind entsprechende geotechnische Untersuchungen bzw. Überwachungsmaßnahmen aufzustellen.

Im konkreten Fall des Ausbau der Strecke 1960 von Uelzen nach Langwedel mit dem Ziel der Anhebung der Streckengeschwindigkeit von 80 km/h auf 100 bzw. 120 km/h bedeutet dies nach Abs. 4:

(4) Sollen Anhebungen der Geschwindigkeiten um mehr als 10 % gegenüber der bisherigen tatsächlich gefahrenen maximalen Geschwindigkeiten vorgenommen werden, sind für den gesamten betroffenen Streckenabschnitt Bewertungen der Tragfähigkeit und Gebrauchstauglichkeit der bestehenden geotechnischen Bauwerke und des Fahrwegunterbaus vorzunehmen.

Das bedeutet, dass mit jeder Änderung der Nutzung Maßnahmen zu ergreifen sind. Ein „Bestandsschutz“ existiert hier demnach nur, wenn die Geschwindigkeit nicht verändert wird.

Es werden keine neuen Bahnübergänge gebaut. Vorhandene Bahnübergänge werden je nach Verkehrssituation durch Brückenbauwerke ersetzt, angepasst oder aufgelassen.

Die Streckenkategorie G 120 fordert alle etwa 20 km einen Überholbahnhof, in dessen Überholungsgleise Züge mit 60 km/h einfahren können.

3.4.2 Ingenieurbauwerke

Im Rahmen der Ertüchtigung der Strecke 1960 liegen erste Einschätzungen des Fachverantwortlichen für Brückenbelastbarkeit (Regionalbereich Nord) unter Berücksichtigung der Geschwindigkeitsanhebung und der höheren Achslast vor. Es wird jedoch darauf hingewiesen, dass infolge der Lasterhöhung Subszantonuntersuchungen und Nachrechnungen einzelner

Als Planungsgrundlage für die Ertüchtigung der Strecke 1960 bilden neben den Einschätzungen und Aussagen des Fachverantwortlichen für Brückenbelastbarkeit zu erneuerungsbedürftigen Bauwerken die IVL-Streckenpläne, Luftbilder sowie vom Bauherrn übergebene Bauwerkslisten. Für bestehende Bauwerke auf der Strecke 1960 werden die anhand der Bauwerkslisten ermittelten bzw. der aus den Lageplänen abgeschätzten lichten Querschnitte berücksichtigt. Verlängerungen und Erweiterungen bestehender Bauwerke, die sich aus der geometrischen Notwendigkeit ergeben, werden anhand der Lagepläne eingeschätzt und abgegriffen. Es werden die Mindestabstände der Geländer zur Gleisachse unter Berücksichtigung des Gefahrenbereiches und des Sicherheitsraums für die Entwurfsgeschwindigkeit $120 \leq v_e \leq 160$ gemäß der Ril 804 zu Grunde gelegt.

3.4.3 Anlagen der Leit- und Sicherungstechnik

Grundlage für die Betrachtung der Anlagen der Leit- und Sicherungstechnik waren die betrieblichen Vorgaben (Stand: 16.12.2011) und die neueste z.Z. verfügbare ESTW-Technik, firmenunabhängig.

3.4.4 Oberleitungsanlage

Gegenstand ist der komplette Neubau der Oberleitungsanlage (15 kV; 16,7 Hz) im Bereich der Strecke 1960 Langwedel bis Uelzen einschl. der Einbindung in den Bf Uelzen.

Die neuen Oberleitungsanlagen werden für eine Befahrbarkeit mit DB- und Eurowippe geplant.
Anpassung von Kettenwerken und anderen Anlagen der Bestandsoberleitung sind dabei nur soweit vorgesehen, wie für die Errichtung der Neuanlagen unbedingt erforderlich ist. Nicht mehr benötigte Anlagen der Oberleitung werden soweit zurückgebaut, dass die Forderungen der Verkehrssicherungspflicht erfüllt sind.

3.4.5 Elektrotechnische Anlagen für Licht- und Kraftstrom

3.5 Kosten

3.5.1 Allgemeine Ansätze

Die Kostenschätzung im Rahmen der Machbarkeitsstudie basiert sowohl auf dem Kostenkennwertekatalog in der Fassung von 2012 als auch auf Erfahrungswerte der Fachplaner aus aktuellen Projekten.

Zu den Baukosten werden folgende Zuschläge addiert:

- Baustelleneinrichtung 10 %
- Sicherungsposten 5 %
- Ausführungsplanung Unternehmer 5 %
- Kampfmittelsondierung 0,8 %

Auf diese Summe werden anschließend Planungskosten in Höhe von 18 % und ein Risikozuschlag von 30 % addiert.

3.5.2 Technische Ansätze und Risiken

Neben den eindeutig zuzuordnenden Kosten haben weitere in dieser Planungsphase nicht genau abzuschätzende Kosten und Risiken in der vorliegenden Schätzung der Baukosten Berücksichtigung gefunden:

- Im Rahmen der Studie ist keine Korrespondenz mit Versorgungsunternehmen erfolgt. Daher ist in der vorliegenden Kostenschätzung die Annahme getroffen, dass außerhalb von Ortschaften 3 Kreuzungen mit Leitungen Dritter sowie im urbanen Gebiet 5 Kreuzungen je Kilometer vorzufinden sind. Jede Kreuzung wird mit einer Verlegungslänge von 40 m bewertet. Ferner sind augenscheinlich auf Luftbildkarten zu erkennende Kreuzungen mit
Freileitungen gesondert erfasst, da diese erfahrungsgemäß eine größere Kostenposition darstellen können.

- Im Bereich der Emissionsschutzmaßnahmen sind die erforderlichen Lärmschutzwände entsprechend dem Kapitel 6 ermittelt. Um die verschiedenen Ausführungsmöglichkeiten der Lärmschutzwände zu berücksichtigen ist die Annahme getroffen, dass 50 % in Aluminiumbauweise sowie 50 % in der teureren Betonbauweise geplant werden.

- Da der Erschütterungsschutz im Rahmen der Machbarkeitsstudie nicht ausreichend beurteilbar ist, wurden die Kosten für mögliche aktive Erschütterungsschutzmaßnahmen am Gleis unter Ansatz der Lärmschutzwandlängen geschätzt.

- Bei den Ingenieurbauwerken wird grundsätzlich von einer Flachgründung bei neu zu errichtenden und zu verändernden Bauwerken ausgegangen.

4 Korrespondierende Maßnahmen

4.1 ESTW Celle

4.2 Herstellung Dreigleisigkeit auf dem Streckenabschnitt Stelle - Lüneburg

4.3 Spurplananpassung Einbindung Uelzen

Die Entwurfsplanungen der DB ProjektBau GmbH mit Stand 07/2012 wurden in der Machbarkeitsstudie berücksichtigt.
5 Risiko- und Kostenabschätzung zu Fragen des Natur- und Gewässerschutzes

5.1 Datengrundlagen und Vorgehensweisen

Bei der Betrachtung der Schutzgüter bzw. zur Ermittlung der relevanten Flächenumfänge für die Abschätzung der Kosten für die naturschutzrechtlichen Instrumente wurden die Korridorbreiten für den Verschneidungsprozess aus dem Umweltleitfaden des Eisenbahn-Bundesamtes entnommen – sie unterscheiden sich je nach betrachtetem Schutzgut.

Die – für die oben genannte Verschneidung – verwendeten umweltrelevanten Datengrundlagen stammen aus der Schutzgebietsdokumentation DB AG. Diese Datenbank wird zentral vom DB Umweltzentrum für alle Unternehmenseinheiten des Konzerns auf aktuellem Stand vorgehalten. Sie enthält geographische Flächen- und Sachdaten zu Natur- und Wasserschutzgebieten der Bundesrepublik sowie einzelne Daten zu Vorkommen geschützter Tier- und Pflanzenarten. In der vorliegenden Studie wurden die Daten zu folgenden Schutzgebietsstypen verwendet:

- Biosphärenreservate
- FFH-Gebiete
- Vogelschutzgebiete
- Naturparke
- Nationalparke
- Naturschutzgebiete
- Landschaftsschutzgebiete
- Wasserschutzgebiete
- Heilquellenschutzgebiete

Die Kostenabschätzungen zu naturschutzschutzfachlichen bzw. umweltplanerischen Leistungen stützen sich sowohl auf die aktuelle Verordnung über die Honorare für Architekten und Ingenieurleistungen (Honorarordnung für Architekten und Ingenieure - HOAI) mit dem Ausfertigungsdatum 11.08.2009 als auch auf die gemittelten Preise des aktuellen bundesweiten DB-Rahmenvertrags zu umweltplanerischen Leistungen. Darüber hinaus wurden insbesondere für die Realisierung von naturschutzfachlichen Maßnahmen Annahmen getroffen, die sich auf eine Datenerhebung abstützen, die im Rahmen der Vorstudie für das Konzernprojekt „Kompensationsverpflichtungen“ erhoben wurden. Die genauerer Beschreibungen bzw. Vorgehensweisen sind in den nachfolgenden Kapiteln zu den jeweiligen naturschutzrechtlichen Instrumenten dargestellt.
5.2 Umweltverträglichkeitsstudie

Nach § 1 des Umweltverträglichkeitsprüfungsgesetzes (UVPG) ist sicherzustellen, dass bei bestimmten öffentlichen und privaten Vorhaben sowie bei bestimmten Plänen und Programmen zur wirksamen Umweltvorsorge nach einheitlichen Grundsätzen

- die Auswirkungen auf die Umwelt im Rahmen von Umweltprüfungen (Umweltverträglichkeitsprüfung und Strategische Umweltprüfung) frühzeitig und umfassend ermittelt, beschrieben und bewertet werden,

- die Ergebnisse der durchgeführten Umweltprüfungen
 - bei allen behördlichen Entscheidungen über die Zulässigkeit von Vorhaben,
 - bei der Aufstellung oder Änderung von Plänen und Programmen

so früh wie möglich berücksichtigt werden.

Die Abschätzung der Flächenumfänge als Grundlage für die Kostenabschätzung zur Umweltverträglichkeitsstudie basiert auf der Berechnung aus den Längen der jeweiligen Trassenvariante bzw. deren Streckenabschnitten und einer Korridorbreite von jeweils 1.000 m rechts und links der Trasse.

Die Kostenabschätzung basiert auf der Honorarzone II der Honorare für Grundleistungen bei Umweltverträglichkeitsstudien aus der Honorarordnung für Architekten und Ingenieure.

5.3 Landschaftspflegerischer Begleitplan

Nach § 13 des Bundesnaturschutzgesetzes (BNatSchG) sind entsprechend der allgemeinen Grundsätze erhebliche Beeinträchtigungen von Natur und Landschaft vom Verursacher vorrangig zu vermeiden. Die nicht vermeidbaren erheblichen Beeinträchtigungen sind durch Ausgleichs- oder Ersatzmaßnahmen oder, soweit dies nicht möglich ist, durch einen Ersatz in Geld zu kompensieren.

Die Abschätzung der Flächenumfänge als Grundlage für die Kostenabschätzung für den Landschaftspflegerischen Begleitplan (LBP) basieren auf der Berechnung aus den Längen der jeweiligen Trassenvariante bzw. deren Streckenabschnitten und einer Korridorbreite von jeweils 500 m rechts und links der Trasse.

Der Ausgleichsbedarf wurde im Verhältnis 1:1 zum Eingriff angenommen. Die Trassenbreite wurde mit jeweils 8,00 m rechts und links der Trasse angenommen. Die Kostenabschätzung für den Ausgleichsbedarf entsprechend Eingriffsregelung wurde aus dem Kostenkennwertekatalog (808.0210A02) – Version V4.0, Pos. 5 01 4 0 0 Pflanzen Landschaftspflege, Bepflanzung und Pflege (bei Ausgleichflächen und Böschungen) mit 32,00 €uro pro m² abgeleitet.

Die Ansätze für Kostenabschätzungen möglicher Artenschutz- und Natura 2000-Maßnahmen werden, da sie in der Regel Bestandteil des LBP sind, auch an dieser Stelle beschrieben. Es wurden zwei Ansätze verfolgt:

- **Szenario 1:** Die Datengrundlagen wurden im Rahmen des Konzernprojektes „Kompensationsverpflichtungen“ erhoben. So wurden im Projekt Köln-Rhein-Main Kosten von 170.000 €uro pro Streckenkilometer für die Maßnahmen aus der Eingriffsregelung ermittelt. Im Projekt Karlsruhe- Basel wurden mit Stand 10/2011 durchschnittlich Kosten von 665,00 €uro pro Streckenkilometer errechnet. Diese Kosten umfassen neben Maßnahmen für die Eingriffsregelung auch Kosten für Artenschutz und die Natura 2000-Thematik. Hieraus abgeleitet, machen die Kosten in Höhe von 32,00 €uro pro m² für die Eingriffsregelung (aus Kostenkennwertekatalog) nur rund 26 % der Kosten für die Maßnahmen aller naturschutzrechtlichen Instrumente aus. Die Berechnung erfolgte deshalb über eine Hochrechnung aus den Kosten für die Eingriffsregelung nach Kostenkennwertekatalog (Anteil 26%) auf 100% Gesamtkosten.

5.4 Artenschutz

Im § 44 des BNatSchG finden sich die Vorschriften für besonders geschützte und bestimmte andere Tier- und Pflanzenarten. Für diese Arten ist es verboten, den wild lebenden Tieren der besonders geschützten Arten nachzustellen, sie zu fangen, zu verletzen oder zu töten oder ihre Entwicklungsformen aus der Natur zu entnehmen, zu beschädigen oder zu zerstören. Darüber hinaus dürfen wild lebende Tiere der streng geschützten Arten und der europäischen Vogelarten während der Fortpflanzungs-, Aufzucht-, Mauser-, Überwinterungs- und Wanderungszeiten erheblich gestört werden. Die Fortpflanzungs- oder Ruhestätten der wild lebenden Tiere der besonders geschützten Arten dürfen nicht aus der Natur entnommen,
beschädigt oder zerstört werden. Für wild lebende Pflanzen der besonders geschützten Arten oder ihre Entwicklungsformen gilt, dass diese nicht aus der Natur entnommen werden dürfen sowie sie oder ihre Standorte zu beschädigen oder zu zerstören. Die Ausnahmeregelungen, die hohe Anforderungen stellen, sind im § 45 BNatSchG ausgeführt.

Die Abschätzung der Flächenumfänge als Grundlage zur Kostenabschätzung für den Artenschutzfachbeitrag basieren auf nachfolgender Prämissen. Eine vollständige Kartierung aller in Frage kommenden Flächen wird ausgeschlossen. Vielmehr wird als Szenario angenommen, dass sich die Flächen aus Teilflächen der folgenden Schutzgebiete mit unterschiedlichen Anteilen innerhalb des 500 m Korridors jeweils rechts und links der Trasse zusammensetzen:

- 20% der FFH-Gebietsfläche,
- 50% der VSG-Gebietsfläche,
- 100% der NSG-Gebietsfläche und
- 20% der LSG-Gebietsfläche.

<table>
<thead>
<tr>
<th>Kartierleistungen</th>
<th>Kosten [€ pro 25 ha]</th>
<th>Kosten [€ pro ha]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flora</td>
<td>1.500 €</td>
<td>60 €</td>
</tr>
<tr>
<td>Fledermäuse</td>
<td>3.400 €</td>
<td>136 €</td>
</tr>
<tr>
<td>Mittel- und Großsäuger</td>
<td>1.100 €</td>
<td>44 €</td>
</tr>
<tr>
<td>Kleinsäuger</td>
<td>2.000 €</td>
<td>80 €</td>
</tr>
<tr>
<td>Brutvögel</td>
<td>2.700 €</td>
<td>108 €</td>
</tr>
<tr>
<td>Zug- und Rastvögel</td>
<td>2.000 €</td>
<td>80 €</td>
</tr>
<tr>
<td>Amphibien</td>
<td>2.000 €</td>
<td>80 €</td>
</tr>
<tr>
<td>Reptilien</td>
<td>2.100 €</td>
<td>84 €</td>
</tr>
<tr>
<td>Käfer</td>
<td>2.400 €</td>
<td>96 €</td>
</tr>
<tr>
<td>Schmetterlinge</td>
<td>2.200 €</td>
<td>88 €</td>
</tr>
<tr>
<td>Heuschrecken</td>
<td>1.700 €</td>
<td>68 €</td>
</tr>
<tr>
<td>Hautflügler</td>
<td>2.700 €</td>
<td>108 €</td>
</tr>
<tr>
<td>Summe:</td>
<td>25.800 €</td>
<td>1.032 €</td>
</tr>
</tbody>
</table>

gerundete Summe für Berechnung: 1.000 €

Tabelle 13 - Angenommene Kosten für Kartierleistungen
5.5 Naturschutzflächen

Bei der Betrachtung der Naturschutzflächen wird in die nationalen und die europäischen Schutzgebiete nach Bundesnaturschutzgesetz (BNatSchG) unterschieden. Die nationalen Schutzgebiete umfassen dabei:

- Biosphärenreservate (§ 25 BNatSchG)
- Naturparke (§ 27 BNatSchG)
- Nationalparke (§ 24 BNatSchG)
- Naturschutzgebiete (§ 23 BNatSchG)
- Landschaftsschutzgebiete (§ 26 BNatSchG)

und zu den europäischen Schutzgebieten gehören:

- FFH-Gebiete (§ 34 BNatSchG in Verbindung mit Artikel 6 Abs. 3 und 4 der FFH-Richtlinie)
- Vogelschutzgebiete (§ 34 BNatSchG in Verbindung mit Artikel 4 Abs. 4 der Vogelschutz-Richtlinie)

Die kleinflächigen geschützten Biotope, die nach § 30 BNatSchG allein aufgrund ihrer Charakteristika geschützt sind und nicht durch eine Verordnung ausgewiesen sind, werden in der vorliegenden Betrachtung nicht berücksichtigt. Die hierzu vorhandenen Datengrundlagen erlauben aufgrund der schlechten Qualität keine belastbaren Aussagen. Sie werden deshalb für die nachfolgenden Planungsschritte in den Kosten für die zu kartierenden Flächen berücksichtigt.

5.5.1 Nationale Schutzgebiete

Die verwendeten Datengrundlagen zu den nationalen Schutzgebieten basieren auf den Lieferungen des Bundesamtes für Naturschutz, die einmal jährlich durch das DB Umweltzentrum für die Schutzgebietsdokumentation DB AG beschafft werden. Die jeweils verwendeten Datenstände sind in der Tabelle 14 aufgeführt.

<table>
<thead>
<tr>
<th>Schutzgebietstyp</th>
<th>Datenstand</th>
<th>Datenlieferung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biosphärenreservate</td>
<td>09/2011</td>
<td>Bundesamt für Naturschutz</td>
</tr>
<tr>
<td>Landschaftsschutzgebiete</td>
<td>01/2011</td>
<td>Bundesamt für Naturschutz</td>
</tr>
<tr>
<td>Nationalparke</td>
<td>09/2011</td>
<td>Bundesamt für Naturschutz</td>
</tr>
<tr>
<td>Naturparke</td>
<td>10/2011</td>
<td>Bundesamt für Naturschutz</td>
</tr>
<tr>
<td>Naturschutzgebiete</td>
<td>01/2011</td>
<td>Bundesamt für Naturschutz</td>
</tr>
</tbody>
</table>

Tabelle 14 - Datenstände und -lieferanten für die nationalen Schutzgebiete

Die Biosphärenreservate sind nach § 25 BNatSchG einheitlich zu schützende und zu entwickelnde Gebiete, die großräumig und für bestimmte Landschaftstypen charakteristisch sind. Sie erfüllen in wesentlichen Teilen ihres Gebiets die Voraussetzungen eines Naturschutzgebiets, im Übrigen überwiegend die eines Landschaftsschutzgebiets. Darüber hinaus dienen sie vornehmlich der Erhaltung, Entwicklung oder Wiederherstellung einer durch hergebrachte vielfältige Nutzung geprägten Landschaft und der darin historisch gewachsenen Arten- und Biotopvielfalt, einschließlich Wild- und früherer Kulturformen wirtschaftlich genutzter oder nutzbarer

Nach § 24 BNatSchG sind **Nationalparke** zu schützende Gebiete, die großräumig, weitgehend unzerschnitten und von besonderer Eigenart sind. Sie erfüllen in einem überwiegenden Teil ihres Gebiets die Voraussetzungen eines Naturschutzgebiets erfüllen und sich in einem überwiegenden Teil ihres Gebiets in einem vom Menschen nicht oder wenig beeinflussten Zustand befinden oder geeignet sind, sich in einen Zustand zu entwickeln oder in einen Zustand entwickelt zu werden, der einen möglichst ungestörten Ablauf der Naturvorgänge in ihrer natürlichen Dynamik gewährleistet.

Die **Naturparke** (§ 27 BNatSchG) sind Gebiete, die großräumig und überwiegend Landschaftsschutzgebiete oder Naturschutzgebiete sind. Sie eignen sich aufgrund ihrer landschaftlichen Voraussetzungen für die Erholung besonders und in denen ein nachhaltiger Tourismus angestrebt wird. Sie dienen der Erhaltung, Entwicklung oder Wiederherstellung einer durch vielfältige Nutzung geprägten Landschaft und ihrer Arten- und Biotopvielfalt und in denen zu diesem Zweck eine dauerhaft umweltgerechte Landnutzung angestrebt wird. Darüber hinaus sind sie besonders dazu geeignet, eine nachhaltige Regionalentwicklung zu fördern.

5.5.2 Europäische Schutzgebiete

Die verwendeten Datengrundlagen zu den europäischen Schutzgebieten basieren auf den Lieferungen des Bundesamtes für Naturschutz, die einmal jährlich durch das DB Umweltzentrum für die Schutzgebietsdokumentation DB AG beschafft werden. Die jeweils verwendeten Datenstände sind in der Tabelle 15 aufgeführt.

<table>
<thead>
<tr>
<th>Schutzgebietstyp</th>
<th>Datenstand</th>
<th>Datenlieferung</th>
</tr>
</thead>
<tbody>
<tr>
<td>FFH-Gebiete</td>
<td>09/2011</td>
<td>Bundesamt für Naturschutz</td>
</tr>
<tr>
<td>Vogelschutzgebiete</td>
<td>01/2011</td>
<td>Bundesamt für Naturschutz</td>
</tr>
</tbody>
</table>

Im § 33 des BNatSchG sind die allgemeinen Schutzvorschriften ausgeführt, nach denen alle Veränderungen und Störungen, die zu einer erheblichen Beeinträchtigung eines Natura 2000-Gebiets in seinen für die Erhaltungsziele oder den Schutzzweck maßgeblichen Bestandteilen führen können, sind unzulässig. Die zuständige Behörde kann unter bestimmten Voraussetzungen Ausnahmen von den Verboten zulassen.

Die Berechnung der Flächenumfänge als Grundlage für die Kostenabschätzung für die Verträglichkeitsstudien nach § 34 BNatSchG erfolgte wurde sowohl aus den Flächen der FFH- als auch der Vogelschutzgebiete. Die Flächen wurden aus den Längen der jeweiligen Trassenvarianten für zwei Korridorbreiten ermittelt:

- jeweils 500 m rechts und links der Trasse für die Artenschutzthematik
- jeweils 1.000 m rechts und links der Trasse für FFH-Verträglichkeit
Hierbei wurden eventuelle Überlagerungen zwischen beiden Schutzgebietstypen in Abzug gebracht, um Doppelberücksichtigungen zu vermeiden.

Die **Kostenschätzung** für die Verträglichkeitsstudien basiert auf den Preisen der Honorarstufe II des aktuellen DB-Rahmenvertrags für umweltplanerische Leistungen. In der Preisstaffel wurde der gemittelte Wert über 25 ha aller Anbieter mit 4.500,00 €uro herangezogen, aus dem sich für die Berechnungen ein Wert von 180,00 €uro pro ha ergibt.

5.6 Schutzgebiete nach Wasserhaushaltsgesetz

5.6.1 Wasserschutzgebiete

Im Rahmen der Analyse von Wasserschutzgebieten wurden die Daten des Niedersächsischen Landesbetriebes für Wasserwirtschaft, Küsten- und Naturschutz mit Stand 05/2011 verwendet.

Wasserschutzgebiete (WSG) können im Interesse der öffentlichen Wasserversorgung festgesetzt werden, um das Grundwasser im Einzugsgebiet einer Wasserentnahme für Trinkwasserzwecke vor Beeinträchtigungen zu schützen (§ 51 Wasserhaushaltsgesetz – WHG). Diese Schutzvorkehrungen können bestimmte Handlungen verbieten oder einschränken. Diese Festlegungen werden rechtsverbindlich in Form von Wasserschutzgebietsverordnungen durch die zuständigen Behörden festgelegt. In der Regel wird das WSG hierzu in Zonen mit unterschiedlichen Schutzbestimmungen eingeteilt:

- **Schutzzone I (= Fassungsbereich):** Die Schutzzone I soll vor jeder unmittelbaren Verunreinigung geschützt werden. Der Fassungsbereich ist deshalb meist eingezäunt. In diesem Bereich sind nur Handlungen erlaubt, die im Zusammenhang mit der Wassergewinnung und -ableitung durch den Träger der öffentlichen Wasserversorgung stehen – ansonsten gelten strenge Handlungsverbote.

- **Schutzzone II (= engere Schutzzone):** Die Schutzzone II wird im Wesentlichen wegen einer potenziellen mikrobiologischen Gefährdung festgelegt. Daher sind bestimmte Baumaßnahmen und Tätigkeiten, die die schützenden Deckschichten verletzen könnten, nicht tragbar. Des Weiteren muss die Fließzeit des Grundwassers vom äußersten Rand der Schutzzone bis zur Fassung mindestens 50 Tage betragen.

- **Schutzzone III A und B (= weitere Schutzzone):** Die Schutzzone III soll das Grundwasser gegen chemische oder radioaktive Verunreinigungen schützen. Diese Zone erstreckt sich meist bis zur Grenze des unterirdischen Wassereinzugsgebiets. Bei großen Einzugsgebieten oder bei Vorhandensein schützender Deckschichten, wird eine Aufteilung in eine Zone III A und III B vorgenommen. Die Fließzeit des Grundwassers in diesen Zonen muss vom äußersten Rand der Schutzzone bis zur Fassung:
 - mindestens 500 Tage in der Zone III A und
 - 2.500-3.500 Tage in der Zone III B

betragen.
5.6.2 Heilquellenschutzgebiete

Im Rahmen der Analyse von Heilquellenschutzgebieten wurden die Daten des Niedersächsischen Landesbetriebes für Wasserwirtschaft, Küsten- und Naturschutz mit Stand 05/2011 verwendet.

Nach § 53 WHG sind Heilquellen natürlich zu Tage tretende oder künstlich erschlossene Wasser- oder Gasvorkommen, die auf Grund ihrer chemischen Zusammensetzung, ihrer physikalischen Eigenschaften oder der Erfahrung nach geeignet sind, Heilzwecken zu dienen. Ein Heilquellenschutzgebiet umfasst in der Regel zwei voneinander unabhängige Schutzzonen. Hierbei handelt es sich um die quantitativen Schutzzonen A und B und die qualitativen Schutzzonen I bis III. Die Schutzbestimmungen sind in entsprechenden Verordnungen festgelegt:

- **quantitative Schutzzone**: Der quantitative Schutz richtet sich gegen eine mengenmäßige Überbeanspruchung der Heilquelle und die damit unter Umständen verbundene, nicht vertretbare Schwankung der Inhaltsstoffe, die bis hin zu einer Veränderung des Heilquellen-typs führen kann.

- **qualitative Schutzzone**: Durch die qualitative Schutzzone sollen anthropogen verursachte Stoffeinträge (gegen hygienische und qualitative Gefährdungen) verhindert werden, um die natürliche Beschaffenheit der Heilquelle zu erhalten.

5.6.3 Überschwemmungsgebiete

Im Rahmen der Analyse von Heilquellenschutzgebieten wurden die Daten des Niedersächsischen Landesbetriebes für Wasserwirtschaft, Küsten- und Naturschutz mit Stand 06/2009 verwendet.

Der § 78 des WHG sieht besondere Schutzvorschriften für festgesetzte Überschwemmungsgebiets vor. So ist es bspw. untersagt bauliche Anlagen zu errichten oder zu erweitern; Mauern, Wälle oder ähnliche Anlagen quer zur Fließrichtung zu errichten sowie wassergefährdende Stoffe auf dem Boden auszubringen oder abzulagern. Die zuständige Behörde kann Ausnahmen zulassen.

5.7 Risikobewertung der Schutzgebiete

Die Abschätzung möglicher Projektrisiken und deren monetäre Auswirkungen aus den naturschutzrechtlichen Fragestellungen können im aktuellen Planungsstadium vor dem Hintergrund der vorgegebenen Rahmenbedingungen (keine Behördenkontakte) nur eingeschränkt erfolgen.

Vor diesem Hintergrund wurden zur Bewertung der jeweiligen Schutzgebiete im Untersuchungs- korridor drei Risikoklassen gebildet, die in der Tabelle 16 dargestellt sind. Bei dieser rein qualitati- ven Klassifizierung wurde die Bedeutung einer möglichen Baumaßnahme im jeweiligen Schutzgebiet abgeschätzt. Hierzu wurden die fachlich-technischen Anforderungen an die Genehmigungs- fähigkeit und damit an den Untersuchungsaufwand im Rahmen des Planungsprozesses berücksichtigt. Darüber hinaus wurden in der Bewertung auch mögliche temporäre oder dauerhafte Auf- lagen im Rahmen der Bau- und Betriebsphase berücksichtigt, die sich in nicht unerheblichem Ma- ße monetär auswirken können.
Risikoklassen und deren Einstufungskriterien

<table>
<thead>
<tr>
<th>Risikoklasse</th>
<th>Kriterien der Einstufung</th>
</tr>
</thead>
</table>

Tabelle 16 - Risikoklassen und deren Einstufungskriterien

Die Einstufung der Schutzgebiete nach den Risikoklassen der Tabelle 4 wird in der nachfolgenden Tabelle 17 dargestellt.

<table>
<thead>
<tr>
<th>Risikoklasse</th>
<th>Schutzgebiet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hoch</td>
<td>Flora Fauna Habitat-Gebiete (FFH-Gebiete)</td>
</tr>
<tr>
<td></td>
<td>Vogelschutzgebiete</td>
</tr>
<tr>
<td></td>
<td>Wasserschutzgebiete Zone I (Fassung)</td>
</tr>
<tr>
<td></td>
<td>Wasserschutzgebiete Zone II (engere Schutzzone)</td>
</tr>
<tr>
<td>Mittel</td>
<td>Naturschutzgebiete</td>
</tr>
<tr>
<td></td>
<td>Heilquellenschutzgebiete (qualitative Schutzzone)</td>
</tr>
<tr>
<td>Gering</td>
<td>Landschaftsschutzgebiete</td>
</tr>
<tr>
<td></td>
<td>Wasserschutzgebiete Zone III, III a und III b (weitere Schutzzone)</td>
</tr>
<tr>
<td></td>
<td>Heilquellenschutzgebiete (quantitative Schutzzone)</td>
</tr>
</tbody>
</table>

Tabelle 17 - Einstufung der Schutzgebiete in die Risikoklassen
6 Schalltechnische Untersuchung

6.1 Rechtliche Grundlagen

Im Wesentlichen liegen der Untersuchung folgende gesetzliche Grundlagen und technischen Regelwerke zugrunde (jeweils in der neuesten Fassung):

- Bundes-Immissionsschutzgesetz, insbesondere §§ 41, 42, 43.
- Sechzehnte Verordnung zur Durchführung des Bundes-Immissionsschutzgesetzes (Verkehrslärmverordnung - 16. BlmSchV)
- Verkehrswege – Schallschutzmaßnahmenverordnung - 24. BlmSchV
- Schall 03, Richtlinie zur Berechnung der Schallimmissionen von Schienenwegen
- RL 804.5501 – Richtlinie Lärmschutzanlagen an Eisenbahnstrecken, gültig ab 1.11.2007, DB Netze
- VLaßmSchR 97 – Richtlinien Verkehrslärmschutz an Bundesfernstraßen in der Baulast des Bundes
- Hinweise des Eisenbahn-Bundesamtes zur Erstellung Schalltechnischer Untersuchungen in der eisenbahn-rechtlichen Planfeststellung von Neu- oder Ausbaumaßnahmen von Schienenwegen, vom 15.06.2009, in der Fassung 01/2010

Zur Einhaltung der Immissionsgrenzwerte ist den aktiven Maßnahmen (Lärmschutzwände, Wälle) der Vorrang einzuräumen.

6.2 Schalltechnische Grundlagen

6.2.1 Berechnungs- und Bemessungsverfahren

Der Emissionspegel Lm,E in dB(A) ist der Mittelungspegel in 25 m Abstand und 3,5 m Höhe über Schienenoberkante von der Achse des betrachteten Gleises bei freier Schallausbreitung. Er dient als Ausgangsgröße für die Berechnung des Beurteilungspegels Lr. Die Emissionspegel Lm,E werden mit den Zugdaten der einzelnen Strecken für den Prognosezustand 2025 mit neuer Trassierung ermittelt.

Die Farben für die Darstellung der Isophonenbänder sind entsprechend dem Anhang B der DIN 18005, Teil 2 gewählt. Verengen sich die Isophonen, wie in der Studie dargestellt, so sind die Ur-
sache neben vorhandener Bebauung in bestehenden bzw. neu dimensionierten Lärmschutzwän-
den zu suchen. In den Isophonenkarten für den Neubau bzw. Erweiterung der bestehenden Stre-
cken sind die Isophonenlinien entsprechend eingezeichnet.
Diese Isophonenlinien stellen Werte dar, bei deren Überschreitung Lärmschutzmaßnahmen in Er-
wägung gezogen oder eingeführt werden sollen.

6.2.2 Maßgebliche bauliche Nutzung
Gemäß § 2 Abs. 2 der 16.BImSchV sind mit Bezug auf die Art der betroffenen baulichen Anlagen
und Gebiete für die Anwendung der Immissionsgrenzwerte die Festsetzungen in den Bebauungs-
plänen relevant. Anlagen und Gebiete für die keine Bebauungspläne existieren, sind entsprechend
der Schutzbedürftigkeit zu beurteilen.
Im Rahmen der Studie wurde bei Vorhandensein von Wohnbebauung als Nutzung Allgemeines
Wohngebiet zugrunde gelegt. Abweichend von der Einordnung in allgemeines Wohngebiet erfolgte
für einzeln stehende Gebäude eine Einstufung in Dorf- und Mischgebiet, da es sich um keine rei-
nen Wohnsiedlungen handelt. Gewerbegebiete sind in Mischgebiete eingestuft worden.

6.2.3 Betroffenheiten
Da ohne digitale Geländemodellle, aber mit digitalisierten Gebäuden gerechnet wurde, ergeben
sich keine exakten Betroffenheiten, so dass Annahmen festgelegt wurden.
Als Maßstab für die Betroffenheiten werden Wohneinheiten (WE) auf Basis der Isophonen mit
10 % Scheibenbremsanteil für Güterzüge und ohne Schienenbonus ermittelt.

6.2.4 Prüfung auf Lärmschutzansprüche
Im Rahmen der Machbarkeitsstudie wird auf Basis der Ergebnisse der Berechnungen geprüft, in-
wieweit Immissionsgrenzwertüberschreitungen vorliegen, da im vorliegenden Fall die „wesentliche
Änderung“ durch die bauliche Erweiterung bzw. den Neubau bereits gegeben ist.
§ 1 Abs. 2. der 16.BImSchV sagt hierzu aus:
„(2) Die Änderung ist wesentlich, wenn
1. ein Schienenweg um ein oder mehrere durchgehende Gleise baulich erweitert wird oder
2. durch einen erheblichen baulichen Eingriff der Beurteilungspegel des von dem zu ändern-
dem Verkehrsweg ausgehenden Verkehrslärms um mindestens 3 Dezibel (A) oder auf
mindestens 70 Dezibel (A) am Tag oder mindestens 60 Dezibel (A) in der Nacht erhöht
wird.
Eine Änderung ist auch wesentlich, wenn der Beurteilungspegel des von dem zu ändernden Ver-
kehrsweg ausgehenden Verkehrslärm von mindestens 70 Dezibel (A) am Tage oder 60 Dezibel
(A) in der Nacht durch einen erheblichen baulichen Eingriff erhöht wird; dies gilt nicht in Gewerbe-
gebieten."
Im Rahmen der Studie werden die Ergebnisse auf Einhaltung der Grenzwerte geprüft und bei
Überschreitung dieser geeignete Maßnahmen vorgeschlagen. Hier kommen, um die Varianten
vergleichen zu können, ausschließlich Lärmschutzwände mit einer Wandhöhe von 4 m zum Ein-
satz. Die exakte Auslegung von Lärmschutzwänden ist einer späteren Untersuchung unter Einbe-
ziehung eines digitalen Geländemodells vorbehalten.
7 Beschreibung und Ergebnisse Variante SGV-Y

7.1 Verkehrsanlagen

7.1.1 NBS Celle – Maschen

Als Aufgabenstellung stand die Trassenfindung für eine zweigleisige Güterverkehrsstrecke zwischen Celle (Strecke 1720) im Süden und der Strecke 1280 im Norden. Die NBS fädelt hierbei zwischen Buchholz und Maschen auf die Bestandsstrecke 1280 ein.

Bis ca. km 3,4 verlaufen die durchgehenden NBS-Gleise auf dem vorhandenen Planum der beiden OHE Bestandsstrecken. Die in diesem Bereich befindlichen Bahnübergänge werden aufgelassen, die vorhandene Überleitstelle bei ca. km 3,0 wird erneuert.

Ab ca. km 3,4 entfernen sich beide OHE-Bestandsstrecken voneinander, die Strecke 9173 verläuft weiter Richtung Osten, während die Strecke 1970 sich nach Norden erstreckt. Die NBS folgt der Bestandsstrecke 9170. Dies bedeutet, dass bei ca. km 3,4 im NBS-Richtungsgleis eine Weiche zur Anbindung der Bestandsstrecke 9173 angeordnet wird. Im weiteren Verlauf (Stammgleis) wird, mit einem Gleisabstand von 4,0m zur Bestandsstrecke 9170, das Richtungsgleis inklusive seines Bahnhörpers neu aufgebaut.

Bei ca. km 7,5 wird das NBS-Richtungsgleis mittels eines Kreuzungsbauwerkes über die OHE-Bestandsstrecke überführt. Das NBS-Gegenrichtungsgleis hingegen wird mittels einer Weiche bei ca. km 7,4 von der OHE Bestandsstrecke ausgefädel. Im weiteren Verlauf nähern sich beide Gleise einander an und verlaufen ab ca. km 8,5 mit einem Gleisabstand von 4,5 m parallel.

Bedingt durch die Nutzung der bestehenden Bahnanasse der OHE im Bereich von km 0,0 (Bahnhof Celle) bis ca. km 7,7 (Bogenende nach Ausfädelung NBS) ist in diesem Bereich nur eine Entwurfsgeschwindigkeit von \(v_e =100 \text{ km/h} \) möglich. Eine Erhöhung der Entwurfsgeschwindigkeit wäre nur mit einer Änderung der Streckenführung möglich, wodurch die vorhandene Bebauung im Stadtgebiet von Celle unverhältnismäßig stark betroffen wäre. Nach der Ausfädelung beträgt die Entwurfsgeschwindigkeit \(v_e =160 \text{ km/h} \).

Der neue Bahnhörper wird so konzipiert, dass die Schienenoberkanten im Durchschnitt 1,5 bis 2,0 m über dem Gelände liegen. Der Neubau in leichter Dammlage ermöglicht eine einfache und effiziente Streckenentwässerung.

Die Festlegung der Trasse zwischen der Ausfädelung an der Strecke 9170 und der Bündelung mit der BAB 7 im Bereich von Celle geschieht unter Berücksichtigung der in diesem Gebiet vorherr-
schenden Bebauung und den allgemein ausgewiesenen Schutzgebieten. Die Linienführung wurde so gewählt, dass einzelne Schutzgebiete nicht bzw. nur in einem geringen Ausmaß direkt betroffen sind.

Ausgehend von der Streckenausfädelung bei ca. km 7,5 verläuft die NBS zunächst in Richtung Westen, um das in diesem Bereich befindliche Segelfluggelände Scheuen zu umfahren. Ab ca. km 9,0 verläuft dann die NBS in Richtung Norden. Die anschließende Trassenführung kann durch folgenden topografischen Verlauf (Schnittpunkte) beschrieben werden:

- mittig zwischen Hustedt und „Jägerei“ Hustedt
- mittig zwischen Eversen und Feuerschützenbostel
- westlich an Waldhof vorbei
- mittig zwischen Katensen und Bollersen (Einzelgehöfte)
- mittig zwischen Bergen und Wohlde (Bergen)
- mittig zwischen Hagen und Nindorf
- westliche Umfahrung des Großen Moores bei Becklingen
- östliche Umfahrung der Truppenübungsplätze Bergen und Munster Süd (südlicher Teil)
- westliche Umfahrung des Truppenübungsplatzes Munster Süd (nördlicher Teil)
- mittig zwischen See bei Moide und Moide

In den Bereichen von ca. km 14,5 bis ca. km 14,7 und ca. km 27,2 bis ca. km 27,4 werden Überleitstellen angeordnet. Ein Überholungsbahnhof mit jeweils seitennrichtigen Überholungsgleisen wird im Bereich von ca. km 37,2 bis ca. km 38,9 vorgesehen.

Mit der Überführung der NBS über die Bestandsstrecke 1960 bei ca. km 44,6 (1960) wird im weiteren Verlauf die NBS mit der BAB 7 gebündelt.

Nach der Überführung der NBS über die Bestandsstrecke 1960 (ca. km 48,9) verläuft die NBS bis zur Tank- und Rastanlage Brunautal Ost (ca. km 64,0) östlich der BAB 7. Im Folgenden wird die Autobahn mittels zweier Trog- und einem Tunnelbauwerk unterführt. Im weiteren Verlauf erfolgt die Streckenführung der NBS bis zur Ortschaft Ramelsloh westlich zur BAB 7.

Südlich von Ramelsloh (ca. km 90,0) verlässt die NBS die Bündelung mit der BAB 7 und verschwenkt nach Westen in Richtung der Bestandsstrecke 1280. Das NBS-Richtungsgleis wird bei ca. km 11,3 (1280) über eine Weiche in die Bestandsstrecke 1280 (Richtung Norden) eingefädelt. Das NBS-Gegenrichtungsgleis hingegen überquert in einem Bogen die Strecke 1280 und fädelt ebenso mit einer Weiche bei ca. km 11,5 (1280) in die Bestandsstrecke Richtung Norden ein. Im Einfädelbereich der NBS an die Bestandsstrecke (Bogen) beträgt die Entwurfsgeschwindigkeit $v_e = 120 \text{ km/h}$.

In den Bereichen von

- ca. km 58,9 bis ca. km 59,1,
- ca. km 84,5 bis ca. km 84,8 und
- ca. km 11,9 bis ca. km 12,2 (1280)

werden Überleitstellen angeordnet. Ein Überholungsbahnhof mit jeweils seitennrichtigen Überholungsgleisen wird im Bereich von ca. km 76,1 bis ca. km 77,9 vorgesehen.
Die NBS und deren Anbindungen werden in Schotteroberbau ausgebildet. Die bereits vorhandenen Entwässerungsanlagen entlang der Bestandsstrecken werden instandgesetzt bzw. erneuert. Im Bereich der Gleisneubauten werden neue Entwässerungseinrichtungen angeordnet.

Innerhalb der NBS werden keine Bahnsteige errichtet.

Die entlang der NBS im Bereich der Bestandsstrecken 9170 bzw. 9173 vorhandenen Bahnübergänge werden je nach baulichem Umfeld durch Brückenbauwerke ersetzt oder aufgelassen. Neue Bahnübergänge werden nicht angeordnet.

Straßen und Wirtschaftswege werden angepasst.

7.1.2 Ausbau der Strecke Soltau – Langwedel (1960) und Anbindung an die NBS

Die Anbindung der NBS an die Bestandsstrecke 1960 wird mit Hilfe zweier Weichen bei ca. km 46,4 (NBS Richtungsgleis) bzw. bei ca. km 46,7 (NBS Gegenrichtungsgleis), in Höhe des Gehöftes Abelbeck, realisiert. Das Richtungsgleis überquert in einem Bogen (\(v_a=100\) km/h) die NBS, das Gegenrichtungsgleis (\(v_a=100\) km/h) nähert sich an. Im weiteren Verlauf überfahren beide Gleise in annähernd paralleler Lage die BAB 7. Dem folgend überquert das Richtungsgleis in einem Bogen (\(v_a=100\) km/h) die Bestandsstrecke 1960 bei ca. km 46,3, während sich das Gegenrichtungsgleis (\(v_a=120\) km/h) auf die Gradiente der Strecke 1960 absenkt. Ab ca. km 46,6 wird das Gegenrichtungsgleis neben dem vorhandenen Bestandsgleis mit einem Gleisabstand von 4,00 m neu aufgebaut (\(v_a=160\) km/h). Bei ca. km 47,35 fädelts das Richtungsgleis mittels einer Weiche in die Bestandsstrecke 1960 ein.

Im weiteren Verlauf wird die bisherige Trassenführung angenommen und der neuen Entwurfsgeschwindigkeit (\(v_a=160\) km/h) angepasst. Beide Gleise werden im Bereich des vorhandenen Bahnkörpers angeordnet.

Im Bahnhof Soltau wird das im Bestand befindliche Gleis 2 als Gegenrichtungsgleis genutzt. Alle zurzeit vorhandenen Fahrbeziehungen werden beibehalten bzw. angepasst. Aufgrund der vorgegebenen Bahnhofsgeometrie und um Sprungkosten zu vermeiden ist im Bahnhof Soltau die Entwurfsgeschwindigkeit auf \(v_a=120\) km/h festgesetzt.

Zwischen ca. km 60,0 und ca. km 60,3 wird in einer Geraden eine Überleitstelle angeordnet.

Im Bereich des Bahnhofs Visselhövede entsteht gemäß den betrieblichen Vorgaben ein neuer Überholungsbahnhof. Hierbei wird das Gleis 2 als durchgehendes Richtungsgleis betrachtet. Das derzeit betrieblich genutzte Gleis 1 wird als seitenrichtiges Überholungsgleis angepasst. Die bereits stillgelegten Gleise 5 und 6 werden zurückgebaut und als Gegenrichtungsgleis (Gleis 5) bzw. seitenrichtiges Überholungsgleis (Gleis 6) wieder neu errichtet. Aufgrund der vorgegebenen Bahnhofsgeometrie und um Sprungkosten zu vermeiden wird im Überholungsbahnhof Visselhövede die Entwurfsgeschwindigkeit auf \(v_a=120\) km/h festgesetzt. Alle zurzeit vorhandenen Fahrbeziehungen werden beibehalten bzw. angepasst.

Ab ca. km 77,7 bis zur Einbindung in den Bahnhof Langwedel wird die technische Lösung der überarbeiteten Vorentwurfsplanung der DB ProjektBau GmbH unterstellt. Im Rahmen dieser Machbarkeitsstudie wird die anteilige Kostenschätzung für diesen Planungsabschnitt in der Kostenschätzung für die Variante SGV-Y berücksichtigt.

Die Ertüchtigung der Strecke 1960 und deren Anbindung an die NBS werden in Schotteroberbau ausgebildet. Die bereits vorhandenen Entwässerungsanlagen entlang der Bestandsstrecke werden
instandgesetzt bzw. erneuert. Im Bereich der Gleisneubauten werden neue Entwässerungseinrich-
ungen angeordnet.

In den Bahnhöfen Soltau und Visselhövede werden die Bahnsteiganlagen entsprechend um- bzw. neugebaut.

Die entlang der Bestandsstrecke 1960 vorhandenen Bahnübergänge werden je nach baulichem Umfeld durch Brückenbauwerke ersetzt oder aufgelassen. Neue Bahnübergänge werden nicht ange-
ordnet.

Straßen und Wirtschaftswege werden angepasst.

7.1.3 Ausbau der Strecke Soltau – Langwedel (1960) und Anbindung an die NBS (Umfahrung von Soltau)

Zur Umfahrung der Stadt Soltau wird die Anbindung der NBS an die Bestandsstrecke 1960 mit Hilfe zweier Weichen bereits bei ca. km 41,7 (NBS Richtungs- und Gegenrichtungsgleis), ca. 1,5 km südlich von Lührsbockel, ausgefädelt. Das Richtungsgleis überquert in einem Bogen (v =120 km/h) die NBS, das Gegenrichtungsgleis (v =120 km/h) nähert sich an. Die Trasse wird in nordwestlicher Richtung von der NBS weggeführt (v =160 km/h). Bis ca. km 1,2 nähert sich der neue Trassenverlauf der Strecke 9170 (OHE) an. Ab dem Bahnhof Lührsbockel bis ca. km 2,8 verläuft die Strecke südlich und in Bündelung mit der Bestandsstrecke 9170. Im weiteren Verlauf orientiert sich der Trassenverlauf nun in westlicher Richtung, hierbei wird bei ca. km 3,5 die BAB 7 überquert. Auf Höhe des Golfclubs Soltau verschwenkt die Trasse ca. 1,5 km Richtung Norden, bevor sie von dort ihre westliche Ausbildung bis ca. km 9,2 fortsetzt. Hier werden die Bahnstrecke 1712 (Walsrode – Buchholz) und die Landesstraße 163 überführt, gleichzeitig verschwenkt die Trasse Richtung Norden und nähert sich der Bestandsstrecke 1960 an.

Bei ca. km 55,3 (1960) überquert das Richtungsgleis die Strecke 1960 (v =120 km/h). Das Gegen-
richtungsgleis (v =160 km/h) senkt sich währenddessen auf die Gradeinte der Strecke 1960 ab. Ab ca. km 55,8 wird das Gegenrichtungsgleis neben dem vorhandenen Bestandsgleis mit einem Gleisabstand von 4,00 m neu aufgebaut (v =160 km/h). Bei ca. km 56,15 fädelt das Richtungs-
gleis mittels einer Weiche in die Bestandsstrecke 1960 ein.

Ab hier ist der Trassenverlauf mit der vorbeschriebenen Variante „Ausbau der Strecke 1960 und Anbindung an die NBS“ identisch, sodass auf die oben beschriebenen Ausführungen verwiesen wird.

7.2 Ingenieurbauwerke

7.2.1 NBS Celle - Maschen

Die NBS in Celle verläuft im Bahnhofsbeirich Celle auf bereits bestehenden Gleisanlagen. Für diese bestehenden Bauwerke liegen keine aktuellen Regelgutachten vor. Es wird davon ausge-
gangen, dass die bestehenden Bauwerke in der Lage sind, die Einflüsse aus der Berücksichtigung der betrieblichen Anforderungen aufzunehmen, so dass für die bestehenden Bauwerke keine bau-
lichen Maßnahmen vorgesehen werden.

Somit werden im Bereich Celle nur Neubauten angeordnet, die aus der Trassierung ergeben. Wei-

terhin wird anhand der Bauwerkslisten sowie der Lagepläne eine ausreichende Geometrie der Be-
standsbaurewerke überprüft – teilweise werden Erweiterungen der Bauwerke erforderlich. Die Erwei-

terung der bestehenden Bauwerke erfolgt entsprechend dem Bestand, die Neubauten erfolgen in Anlehnung an den Bestand.

Die NBS-Gleise verlaufen ca. bis km 3,4 auf dem vorhandenen Planum der beiden OHE Bestandsstrecken. Die in diesem Bereich befindlichen Bahnanlagen werden durch Neubauten als Eisenbahnüberführung aufgelassen.

- Eisenbahnüberführung Harburger Straße, km 2,284
- Eisenbahnüberführung K28 (Sprenger Straße), km 3,205.

Die im anschließenden Bereich (ca. bis zum km 5,8) befindlichen Bahnanlagen werden teilweise ersatzlos aufgelassen bzw. durch Neubauten als Eisenbahnüberführung bzw. Straßenüberführung ersetzt:

- Eisenbahnüberführung Hehlenkamp, km 3,704
- Auflösung Bahnanlage km 4,239
- Auflösung Bahnanlage km 4,585
- Eisenbahnüberführung Bosteler Weg, km 4,841
- Straßenüberführung Garßener Weg, km 5,739.

Infolge der im ergebenden Vorteile für die Entwässerung bei der Führung der NBS auf einem Damm (1,5-2,0 m) bzw. im Bündelungsbereich mit der BAB 7 auf Höhe der Autobahn ergibt sich ebenfalls die Ausbildung der höhenfreien Kreuzungen durch Eisenbahnüberführungen.

Kleinere Gewässer (Bäche und Gräben) werden mit Hilfe von Durchlässen sowie mittels Eisenbahnüberführungen überquert.

In den Bereichen der Bundesautobahn BAB 7 werden die neuen Bauwerke entsprechend den vorhandenen Unter- oder Überführungen der Straßen und Wege über- bzw. unter der BAB 7 geführt, so dass Eingriffe in die Trassen der Straßen möglichst gering gehalten werden. Die BAB 7 wird im km 64,250 aufgrund der schiefwinkligen Kreuzung mit Hilfe zweier Stahlbetontröge- sowie einem Tunnelbauwerk aus Stahlbeton überführt.

In den Bereichen von Autobahnaufl- und Ausfahrten werden zusätzlich Stützwände zur Abfangung des Bahndammes vor und hinter den vorgesehenen Bauwerken angeordnet. Somit können raumgreifende Erdkörper (Anschüttungen) im Bereich der Planungsgrenze (Annahme Abstand 40 m zur BAB 7 siehe Erläuterungen im Abschnitt 3.1.1) vermieden werden; die Trasse kann möglichst nah an der BAB 7 geführt werden.
Ab ca. km 90,3 wird die NBS westlich von der BAB 7 weggeführt und fädelt schließlich im Bereich km 94,3 bis km 95,0 in die Bestandsstrecke 1280. Dafür wird ein eingleisiger Stahlüberbau einschließlich Stützbauwerken für das Richtungsgleis erforderlich um die Bestandstrasse zu überqueren.

7.2.2 Ausbau der Strecke Soltau - Langwedel (1960) und Anbindung an die NBS

Im Zuge der Anbindung der NBS an die Bestandstrecke werden Neubaumaßnahmen für diverse Ingenieurbauwerke erforderlich. Für die Querung des Richtungsgleises über die NBS ist ein Kreuzungsbauwerk als eingleisiger Stahlüberbau vorgesehen. Anschließend werden beide Gleise der Anbindung mittels zweigleisigem Stahlüberbau über die BAB 7 geführt. Um eine Zugänglichkeit der durchschnittenen land- und forstwirtschaftlichen Flächen zu gewährleisten, wird nach dem Kreuzen der Autobahn ein Neubau einer Eisenbahnüberführung als Rahmenbauwerk angeordnet. Vor der Einfädelung in die Bestandstrecke überquert das Richtungsgleis mittels eingleisigem Stahlüberbau die Bestandsstrecke 1960, während sich das Gegenrichtungsgleis auf die Gradiente der Strecke 1960 absenkt und somit kein zusätzliches Bauwerk erforderlich wird.

Für den Großteil der Bauwerke wird eingeschätzt, dass unter Berücksichtigung des Gleisabstandes von 4,0 m und des beidseitigen Sicherheitsraumes von 0,8 m eine ausreichende Breite für den 2-gleisigen Ausbau vorhanden ist. Für vereinzelte Bauwerke werden Instandsetzungsarbeiten sowie eine Erneuerung der Randkappen einschließlich der Absturzsicherung vorgesehen. Eine Erweiterung des Bauwerkes als Rahmenbauwerk wird z. B. für die Eisenbahnüberführung Süderstraße im km 69,112 erforderlich.

Hinsichtlich der Geschwindigkeitsanhebung auf bis zu 160 km/h unter Berücksichtigung der 25 t Achslast liegen für die einzelnen Bauwerke im betrachteten Streckenabschnitt Soltau - Visselhövede Einschätzungen des Fachverantwortlichen für Brückenbelastbarkeit vor.

Anhand dieser Einschätzungen wird für die Bauwerke:

- km 47,078 Eisenbahnüberführung Abeldecker Weg; Baujahr 1950; Grund: wegen Radius nur bis 80 km/h zugelassen
- km 52,796 Eisenbahnüberführung Seilerstraße, Baujahr 1901; Grund: wegen Radius nur bis 80 km/h zugelassen
- km 70,185 Eisenbahnüberführung Personentunnel Bahnhof Visselhövede; Baujahr 1906; Grund: geringe Belastbarkeit

ein Ersatzneubau erforderlich.
Für folgendes Bauwerk wurde seitens des Fachverantwortlichen für Brückenbelastbarkeit ein Ersatzneubau empfohlen und in der Machbarkeitsstudie erfasst:

- km 51,440 Eisenbahnüberführung Böhme und Charlottenstraße; Baujahr 1872
 Grund: eingeschränkte Durchfahrthöhe, starke Anfahrschäden, anderes nebenliegendes Bauwerk.

Für die Eisenbahnüberführung Fußweg (Baujahr 1913) im km 51,908 wird aufgrund des absehbaren Erreichens der Restnutzungsdauer seitens des Fachverantwortlichen für Brückenbelastbarkeit ebenfalls ein Ersatzneubau empfohlen. Im Rahmen der Machbarkeitsstudie wird der Rückbau der Eisenbahnüberführung vorgesehen. Die Funktion der Fußwegüberführung wird durch den Neubau der Eisenbahnüberführung Walsroder Straße im unmittelbaren Umfeld übernommen – die Eisenbahnüberführung wird für den Bahnübergang Walsroder Straße im km 51,878 errichtet und ermöglicht die Querung der Gleise unabhängig vom Bahnbetrieb.

Im betrachteten Streckenabschnitt zwischen Soltau – Visselhövede befinden sich viele Gewölbe. Die Gewölbebauten wurden oftmals im Jahr 1872 errichtet und befinden sich gemäß den Einschätzungen des Fachverantwortlichen für Brückenbelastbarkeit in einem recht guten Zustand – allerdings müssen lokale Instandsetzungsarbeiten durchgeführt werden, um für die Lasterhöhung gewappnet zu sein.

Weiterhin befinden sich im Streckenabschnitt Soltau - Visselhövede mehrere Bahnübergänge, die im Rahmen der Machbarkeitsstudie durch Umbaumaßnahmen erfasst bzw. durch den Neubau von Ingenieurbauten aufgelassen werden. Dabei werden bestehende Bahnübergänge im Raum Soltau und Visselhövede aufgrund des größer angenommenen Verkehrsaufkommens gegenüber ländlichen Bereichen aufgelassen. Hierzu werden die

- Eisenbahnüberführung Am Hohen Eitz, km 50,431
- Eisenbahnüberführung B3, Celler Straße, km 50,980
- Eisenbahnüberführung Walsroder Straße, km 51,875
- Eisenbahnüberführung Bahnhofstraße, km 70,061
- Eisenbahnüberführung Zur Reith, km 71,459

sowie die

- Straßenüberführung B440, Celler Straße im km 68,374

vorgesehen.

Die Bahnübergänge im ländlichen Gebiet werden mittels Umbaumaßnahmen erfasst.

Für die Durchlässe wird eine weitere Nutzung der Bestandsbauwerke angenommen und pauschal Instandsetzungsarbeiten angesetzt. Bauwerksgutachten, Aussagen zur Tragsicherheit sowie Einschätzungen bezüglich der Geschwindigkeitsanhebung auf bis zu 160 km/h unter Berücksichtigung der 25 t Achslast liegen nicht vor.
7.2.3 Ausbau der Strecke Soltau – Langwedel (1960) und Anbindung an die NBS (Umfahrung von Soltau)

Zur Umfahrung der Stadt Soltau wird die Anbindung der NBS an die Bestandsstrecke 1960 bei ca. km 41,7 (NBS Richtungs- und Gegenrichtungsgleis), von der NBS in westlicher Richtung geführt. Das Richtungsgleis der Anbindung überquert die NBS als eingleisiger Stahlüberbau. Aufgrund der schiefwinkligen Lage der sich kreuzenden Gleise werden zusätzlich Stützbauwerke zur Bahndammabfangung erforderlich. Die Trasse der Anbindung nähert sich dem Trassenverlauf der Strecke 9170 (OHE) an und verläuft dann ca. 1,4 km in Bündelung mit der Bestandstrasse – hier werden neue Ingenieurbauwerke zur Überquerung von Straße angeordnet. Anschließend wird die Trasse in westlicher Richtung vom Bestand wegführt und überquert im km 3,5 die BAB 7 mittels zweigleisigem Stahlüberbau.

Ab hier ist der Trassenverlauf mit der vorbeschriebenen Variante „Ausbau der Strecke 1960 und Anbindung an die NBS“ identisch, sodass auf die oben beschriebenen Ausführungen verwiesen wird.

7.3 Anlagen der Leit- und Sicherungstechnik

7.3.1 NBS Celle - Maschen

Im Bahnhof Celle werden die Bahnhofsgleise 24 und 25 für die NBS angepasst. Im Nordkopf des Bahnhofs Celle werden die Gleise 30a und 30b der Osthannoverschen Eisenbahnen AG (OHE) für die NBS genutzt. Hier sind mit der OHE Abstimmungen zum Verlauf von Zug- und Rangierstraßen sowie Schnittstellen erforderlich. Für den Kostenvergleich wurde im Bahnhof Celle ein neues ESTW-Modul für die Erweiterung vorgesehen. Bei Fortführung dieser Variante ist im weiteren Planungsfortschritt zu prüfen, ob die Erweiterungen für die NBS im vorhandenen ESTW-UZ Celle (HC) (SB 4) integriert werden können.

Es wird keine neuen Bahnübergänge geben, vorhandene BÜ im Bereich der Bestandsstrecken 9170 bzw. 9173 werden durch Brückenbauwerke ersetzt oder aufgelassen.

In den beiden Überholungsbahnhöfen km 38,0 und km 77,0 wird eine Nutzgleislänge von 750 m ohne Fahrstraßenausschlüsse realisiert.

Die NBS beginnt im Norden an der zweigleisigen Strecke (1280) Buchholz – Maschen am km 11,5. Am km 12,0 ist eine Überleitstelle vorgesehen. In diesem Bereich ist das erste ESTW-Module aufzustellen. Der Streckenblock und die Blocksignale der Strecke 1280 werden in diesem Abschnitt an die NBS angepasst.

Aus Sicht der Leit- und Sicherungstechnik wäre es besser, die Überleitstelle näher an den Weichen der Abzweigstelle zu positionieren (< 400 m). Damit können Geschwindigkeitsüberwachun-
gen für Spätablenkung vermieden werden. Dies muss im Rahmen der nächsten Planungsphase geklärt werden.

An der NBS sind insgesamt acht neue ESTW-Module erforderlich.

7.3.2 Ausbau der Strecke Soltau - Langwedel (1960) und Anbindung an die NBS

Die NBS wird etwa am km 49,0 von der Strecke 1960 Uelzen - Langwedel gequert. Über den Ausbau dieser Strecke in Richtung Langwedel erfolgt der Anschluss nach Bremen.

Der Bahnhof Visselhövede wird zum viergleisigen Überholungsbahnhof ausgebaut. Am km 60,1 wird eine Überleitstelle eingerichtet.

Zum Anschluss an die NBS gibt es zwei Varianten:

- Durchfahrt durch Bahnhof Soltau
- Umfahrung von Bahnhof Soltau

Bei der Variante Durchfahrt Bahnhof Soltau müssen alle acht Bahnhofsgleise mit ESTW-Technik ausgerüstet werden. Der separate Stellwerksbezirk Ssf der OHE mit dem Anschluss an die Strecken 9111 und 9170 bleibt bis auf die Anpassung zum ESTW unverändert.

An der Strecke 1960 sind drei neue ESTW-Module erforderlich.

Bei der Variante Umfahrung Soltau ist es aus Sicht der Leit- und Sicherungstechnik besser, den Überholungsbahnhof am km 38,0 und den Abzweig Soltau enger zusammenzulegen oder weiter auseinanderzuziehen. Damit ist die Blockteilung besser zu gestalten, es können separate Vorsignale eingespart werden. Dies muss im Rahmen der nächsten Planungsphase geklärt werden.

Die vorhandenen LST-Anlagen der Bahnhöfe Soltau und Visselhövede werden zurückgebaut.

7.4 Oberleitungsanlage

7.4.1 Anlagen der DB Energie

Als Voraussetzung für die Bahnenergieversorgung der NBS (SGV-Y) und der Strecke 1960 müssen gemäß den Ermittlungen der DB Energie nachfolgende Anlagen neu, ertüchtigt oder umgebaut werden:

- Neubau Schaltposten Maschen
- Neubau Umrichterwerk Soltau
- Ertüchtigung/ Erweiterung (Neubau 15-kV-Schaltanlage) Unterwerk Garßen
- Neubau Schaltposten Celle
- Neubau Schaltposten Langwedel
- Ertüchtigung/ Erweiterung Fernwirkanlagen Oberleitung

Eine Zugfahrtsimulation war aufgrund fehlender Zugmengen nicht möglich.

Aus heutiger Sicht und der vorliegenden Unterlagen werden vsl. keine Verstärkungsleitungen benötigt.
7.4.2 Bahnenergieversorgung
Die Bahnenergieversorgung der NBS und der Strecke 1690 erfolgt aus den folgenden neu zu errichtenden Anlagen der DB Energie:

- Schaltposten Maschen
- Umrichterwerk Soltau
- Schaltposten Celle
- Schaltposten Langwedel

7.4.3 Bahnenergieleitungen

7.4.4 Schaltkonzept Oberleitung
Die Schaltungen der Oberleitung werden nach netz- und bahnbetrieblichen, wirtschaftlichen, schutztechnischen sowie oberleitungstechnischen Aspekten geplant. Bei Neubaumaßnahmen oder umfangreichen Umbaumaßnahmen werden die Entwürfe der Oberleitungsschaltpläne der Zentrale der DB Energie und der Zentrale der DB Netz AG, I.NVT, zur Prüfung vorgelegt (siehe 997.0301 Abs. 5 (1)).

Bei der Anordnung von Schaltern und Schaltgruppen wird die konzerninterne Ril 997.03 zu Grunde gelegt. Zur Erhöhung der Verfügbarkeit werden in den beiden Überholungsbahnhöfen der NBS und im Bahnhof Visselhövede gemäß Ril 997.03 Längstrennungen der Oberleitungen im Bahnhof vorgesehen. Weiterhin werden an den geplanten Überleitstellen schaltbare Streckentrennungen ausgeführt.

Zur Gewährleistung der Verfügbarkeit soll jede Schaltgruppe über mindestens zwei unabhängige Einspeisungen verfügen.

Im Bereich des neu zu errichtenden Urw Soltau wird vorzugsweise eine Inselspeisung der Oberleitung aufgebaut.

Hinweis: Der Bahnhof Soltau ist im vorliegenden Konzept der ABS oberleitungstechnisch nicht als Bahnhof anzusehen, so dass die Inselspeisung in beiden Untervarianten auf der freien Strecke angeordnet wird.

7.4.5 Bauart Oberleitung
Die durchgehenden Hauptgleise werden einschließlich der Weichenverbindungen unabhängig von der Streckengeschwindigkeit in der Bauart Re 200i (Eurowippe), die Überholungsgleise der Überholungsbahnhöfe mit der Bauart Re 100i (Eurowippe) überspannt.

Die genannten Bauarten erlauben den Einsatz des DB-Standard-Stromabnehmers (Stromabnehmer TYP 1.950) sowie der interoperablen Eurowippe (Stromabnehmer TYP 1.600).

Die gesamten Oberleitungsanlagen werden für einen Temperaturbereich von 100 K ausgelegt. Bei der Planung der Oberleitung wird die in Ebs 02.05.32 genannte Bemessungswindgeschwindigkeit von 26 m/s zu Grunde gelegt.
7.4.6 Maste und Fundamente

Die neu zu errichtende Oberleitungsanlage wird in konsequenter Einzelmastbauweise realisiert. Die Oberleitungsringe werden gemäß Ril 997.01 vorzugsweise in Betonbauweise ausgeführt. In beengten Bereichen der ABS wird die Errichtung von Peinermasten befürwortet.

Die Fundamente der Oberleitung werden vorzugsweise als Rammgründungen ausgeführt.

7.4.7 Längskettenwerke

Im Bereich der Bahnübergänge werden Kettenwerksanhebungen realisiert, so dass die minimale Fahrdrahthöhe von 5,50 m unter Berücksichtigung der Zusatzlasten über der kreuzenden Straße nicht unterschritten wird.

Weiterhin wird die Strecke 1960 an drei Stellen niveaufrei von anderen Eisenbahnstrecken gekreuzt:

- km 50,038 (1960/50,038/1817)
- km 50,357 (1712/89,760/1641)
- km 53,701 (1960/53,701/1817)

Über die lichten Höhen der Kreuzungsbauwerke liegen derzeit keine Angaben vor.

Im Planungsbereich sind derzeit keine Straßenüberführungen vorhanden. Für geplante Straßenüberführungen muss die minimale lichte Höhe der Bauwerke mindestens 5,70 m über Schienenoberkante betragen. Die minimale lichte Höhe von 5,70 m über Schienenoberkante gilt ebenfalls für geplante Überführungen im Bereich der freien Strecke der NBS.

Die ggf. erforderlichen Kettenwerksabsenkungen werden unter Beachtung der für die Befahrgeschwindigkeit maximal zugelassenen Fahrdrahtneigungen gemäß Ril 997.01 errichtet.

Die Mindestfahrdrahthöhe einschl. Hebungsreserve von 5,05 m gemäß Ril 997.01 darf unter keinen Umständen unterschritten werden.

7.4.8 OSE-Kabelanlagen

Für die Steuerung der Masttrennschalter werden insbesondere im Bereich der Bahnhöfe OSE-Kabelanlagen neu errichtet und an die seitens DB Energie geplanten Fernwirk-Unterstationen angeschlossen.

Schnittstellen für die OSE-Außenkabelanlagen sind die Hauptklemmleisten (HX 1) der Fernwirkunterstationen für die Steuerung der Oberleitungsschalter und die Klemmleisten der Masttrennschaltantriebe. Die Planung und Realisierung der OSE- Fernwirkunterstation und der HX 1-Klemmleisten erfolgen in Zuständigkeit der DB Energie.

Bei der Dimensionierung der neu zu verlegenden Steuerkabel sind drei Adern je Antrieb für die Steuerung der Motorantriebe der Masttrennschalter und zwei Adern je Kurzschlussmeldewandler sowie Reserveadern entsprechend Ril 997.9118 vorgesehen.
Für OSE-Außenkabel werden ausschließlich Kabeln vom Typ NYY-0 verwendet. Es wird jeweils entsprechend der benötigten Anzahl von Adern die nächstmögliche Vorzugsgröße gewählt. Als Mindestquerschnitt der Außenkabel wird aus mechanischen Gründen 2,5 mm² Kupfer eingesetzt.

7.4.9 Fernwirkunterstation OSE

Für die Ansteuerung der Masttrennschalter werden neue Fernwirk-Unterstationen OSE vorzugsweise in den neu geplanten ESTW-Modulen installiert und in die neu zu erstellende Fernwirklinie eingebunden.

7.4.10 Erdungsanlagen im Oberleitungsbereich

Die Erdungs- und Rückleitungsanlagen werden im gesamten Bauvorhaben gemäß Ril 997.02 ff. sowie Technischer Mitteilung TM 2008 – 064 I.NVT 4 E unter Verwendung von flexiblen Stahlseil nach Ebs 20.01.02 mit Querschnitt 1x95 mm² ausgeführt (Diebstahlschutz).

Bei der Planung und Errichtung von Erdungsanlagen im Bereich der Oberleitung wird ein Kurzschlussstrom gemäß den Vorgaben von DB Energie zu Grunde gelegt.

7.5 Elektrotechnische Anlagen für Licht- und Kraftstrom

7.5.1 NBS Celle - Maschen

Energieversorgung:

Die Energieversorgung der neuen ESTW-Module wird über Trenntransformatoren zur Netzteilung erfolgen. Um die unterbrechungsfreie Energieversorgung der neuen ESTW-Module zu gewährleisten, werden diese mit Netzersatzanlagen, die aus dem Netz der Oberleitung eingespeist werden, ausgerüstet.

Elektrische Weichenheizanlagen:

Bahnsteigbeleuchtungsanlagen und Ausrüstungen:

Entlang der NBS werden keine neue Bahnsteige aufgebaut.
Gleisfeldbeleuchtungsanlagen:

Entlang der NBS werden keine neuen Gleisfeldbeleuchtungsanlagen errichtet.

7.5.2 Ausbau der Strecke Soltau – Langwedel (1960) und Anbindung an die NBS

Energieversorgung:

Im Zuge des Ausbaus und der Erneuerung der Gleisanlage der Strecke 1960 werden die Energieversorgungen in den betroffenen Bahnhöfen erneuert. Dabei werden die vorhandenen Hausanschlüsse angepasst und ggf. wegen des erhöhten Leistungsbedarfs (ESTW-Anschlüsse und neue Beleuchtungsanlagen) verstärkt.

Die Energieversorgung der neuen ESTW-Module wird über Trenntransformatoren zur Netz trennung erfolgen. Um die unterbrechungsfreie Energieversorgung der neuen ESTW-Module zu gewährleisten, werden diese mit Netzersatzanlagen, die aus dem Netz der Oberleitung eingespeist werden, ausgerüstet.

Elektrische Weichenheizanlagen:

Bahnsteigbeleuchtungsanlagen und Ausrüstungen:

Im Zuge des Ausbaus und der Erneuerung der Gleisanlage im Bereich der Bahnhöfe Soltau und Visselhövede werden die Beleuchtungsanlagen der Bahnsteige erneuert. Die bestehenden und neu zu errichtenden Ausrüstungen werden an die neuen Verteilungen (Standardbauweise) der DB Station&Service angeschlossen.

Gleisfeldbeleuchtungsanlagen:

Die durch den Ausbau der Gleisanlagen betroffenen Gleisfeldbeleuchtungsanlagen im Bahnhof Soltau werden angepasst und an die neu zu errichteten Beleuchtungsverteilungen der DB Netz angeschlossen. Im Rahmen der weiteren Planungsphasen ist zu prüfen, ob die Anlagen der Gleisfeldbeleuchtung zu erneuern bzw. wegen der neuen Dienstwege zu erweitern sind. Hierzu sind die Anlagenverantwortlichen und der Betreiber hinzuzuziehen.
7.6 Naturschutz

7.6.1 Qualitative Risikobewertungen betroffener Schutzgebiete

In den nachfolgenden Tabellen sind die im geplanten Trassenbereich identifizierten Schutzgebiete aufgelistet:

<table>
<thead>
<tr>
<th>Schutzgebietstyp</th>
<th>NBS SGV Celle (e) – Soltau</th>
<th>NBS SGV Soltau – Abzw Maschen</th>
<th>ABS 1960 Soltau (e) – Visselhövede (e)</th>
<th>ABS 1960 Visselhövede (a) - Langwedel</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>FFH</td>
<td>0,670</td>
<td>3,740</td>
<td>0,540</td>
<td>0,190</td>
<td>5,140</td>
</tr>
<tr>
<td>HQSG</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LSG</td>
<td>10,275</td>
<td>15,120</td>
<td>2,630</td>
<td>0,270</td>
<td>28,295</td>
</tr>
<tr>
<td>NSG</td>
<td>1,070</td>
<td>3,720</td>
<td>0</td>
<td>0</td>
<td>4,790</td>
</tr>
<tr>
<td>ÜBSchG</td>
<td>0,625</td>
<td>0</td>
<td>0,380</td>
<td>0</td>
<td>1,005</td>
</tr>
<tr>
<td>VSG</td>
<td>0</td>
<td>3,720</td>
<td>0</td>
<td>0</td>
<td>3,720</td>
</tr>
<tr>
<td>WSG</td>
<td>12,955</td>
<td>19,090</td>
<td>0</td>
<td>5,700</td>
<td>37,745</td>
</tr>
<tr>
<td>Summe</td>
<td>25,595</td>
<td>45,39</td>
<td>3,55</td>
<td>6,16</td>
<td>80,695</td>
</tr>
</tbody>
</table>

Tabelle 18 - Identifizierte Schutzgebiete Variante SGV-Y Soltau

<table>
<thead>
<tr>
<th>Schutzgebietstyp</th>
<th>NBS SGV Celle (e) – Soltau</th>
<th>NBS SGV Soltau – Abzw Maschen</th>
<th>ABS 1960 Um. Soltau – Visselhövede (e)</th>
<th>ABS 1960 Visselhövede (a) - Langwedel</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>FFH</td>
<td>0,670</td>
<td>3,740</td>
<td>0,950</td>
<td>0,190</td>
<td>5,550</td>
</tr>
<tr>
<td>HQSG</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LSG</td>
<td>10,275</td>
<td>15,120</td>
<td>1,550</td>
<td>0,270</td>
<td>27,215</td>
</tr>
<tr>
<td>NSG</td>
<td>1,070</td>
<td>3,720</td>
<td>0,580</td>
<td>0</td>
<td>5,370</td>
</tr>
<tr>
<td>ÜBSchG</td>
<td>0,625</td>
<td>0</td>
<td>0,240</td>
<td>0</td>
<td>0,865</td>
</tr>
<tr>
<td>VSG</td>
<td>0</td>
<td>3,720</td>
<td>0</td>
<td>0</td>
<td>3,720</td>
</tr>
<tr>
<td>WSG</td>
<td>12,955</td>
<td>19,090</td>
<td>0</td>
<td>5,700</td>
<td>37,745</td>
</tr>
<tr>
<td>Summe</td>
<td>25,595</td>
<td>45,39</td>
<td>3,32</td>
<td>6,16</td>
<td>80,465</td>
</tr>
</tbody>
</table>

Tabelle 19 - Identifizierte Schutzgebiete Variante SGV-Y Umfahrung Soltau
7.6.2 Kostenabschätzung für naturschutzfachliche Kompensationsmaßnahmen NBS Celle - Maschen

Die Kostenschätzungen für die umweltplanerischen Instrumente und deren Herleitung sind unter Worst-Case-Bedingungen in der Tabelle 20 dargestellt:

<table>
<thead>
<tr>
<th>#</th>
<th>Inhalt / Berechnung</th>
<th>Kalkulatorische Fläche [ha]</th>
<th>Kosten [t€uro]</th>
</tr>
</thead>
</table>
| 1 | Umweltverträglichkeitsstudie
Untersuchungsfläche errechnet aus einer Korridorbreite von jeweils 1.000 m rechts und links der Trasse | 20.300 | 632 |
| 2 | Eingriffsregelung
Untersuchungsfläche errechnet aus einer Korridorbreite von jeweils 500 m rechts und links der Trasse | 10.000 | 114 |
| 3 | Artenschutz-Fachbeitrag
Untersuchungsfläche errechnet aus einer Korridorbreite von 500 m rechts und links der Trasse mit folgenden Flächenanteilen
20% der FFH-Gebietsfläche | 96 | 114 |
| | 50% der VSG-Gebietsfläche | 1 | 114 |
| | 100% der NSG-Gebietsfläche | 42 | 114 |
| | 20% der LSG-Gebietsfläche | 740 | 114 |
| | Kosten Kartierleistungen: | 880 | 114 |
| | Kosten Fachbeitrag: | 880 | 114 |
| | Gesamtkosten Fachbeitrag: | 952 | 114 |
| 4 | Verträglichkeit nach § 34 BNatSchG
Untersuchungsfläche errechnet aus einer Korridorbreite von jeweils 1.000 m rechts und links der Trasse; evtl. Überlagerungen von FFH- und Vogelschutzgebieten wurden in Abzug gebracht | 1.193 | 5.400 |

Gesamtsumme Planungsleistungen 7.098

Tabelle 20 - Kostenabschätzung für UVS und naturschutzfachliche Planungsleistungen Variante NBS Celle - Maschen
Die Kosten für die naturschutzfachlichen Kompensationsmaßnahmen sind unter Worst-Case-Bedingungen in der nachfolgenden Tabelle 21 dargestellt.

<table>
<thead>
<tr>
<th>Inhalt / Berechnung</th>
<th>Streckenlänge, gerundet [km]</th>
<th>Kosten [tEuro]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Szenario 1:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kosten für Ausgleichsmaßnahmen (errechnet über Streckenlänge und angenommene Eingriffsbreite von 16 m bei Kosten von 32,-- €uro pro m²)</td>
<td>97,3</td>
<td>49.800</td>
</tr>
<tr>
<td>Resultierende Gesamtkosten für Naturschutzmaßnahmen (errechnet aus den Kosten für Ausgleichsmaßnahmen, die nur 26 % der Gesamtkosten ausmachen)</td>
<td></td>
<td>191.600</td>
</tr>
<tr>
<td>Gesamtkosten:</td>
<td></td>
<td>191.600</td>
</tr>
<tr>
<td>Szenario 2:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gesamtkosten für Naturschutzmaßnahmen</td>
<td>97,3</td>
<td>100.900</td>
</tr>
</tbody>
</table>

Tabelle 21 - Kostenabschätzung für naturschutzfachliche Kompensationsmaßnahmen
Variante NBS Celle - Maschen
7.6.3 Kostenabschätzung für naturschutzfachliche Kompensationsmaßnahmen

Ausbau der Strecke Soltau – Langwedel (1960) mit Anbindung an die NBS

Die Kostenschätzungen für die umweltplanerischen Instrumente und deren Herleitung sind unter Worst-Case-Bedingungen in der Tabelle 22 dargestellt:

<table>
<thead>
<tr>
<th>#</th>
<th>Inhalt / Berechnung</th>
<th>Kalkulatorische Fläche [ha]</th>
<th>Kosten [t€uro]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Umweltverträglichkeitsstudie</td>
<td>7.050</td>
<td>222</td>
</tr>
<tr>
<td></td>
<td>Untersuchungsfläche errechnet aus einer Korridorbreite von jeweils 1.000 m rechts und links der Trasse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Eingriffsregelung</td>
<td>3.500</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>Untersuchungsfläche errechnet aus einer Korridorbreite von jeweils 500 m rechts und links der Trasse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Artenschutz-Fachbeitrag</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Untersuchungsfläche errechnet aus einer Korridorbreite von 500 m rechts und links der Trasse mit folgenden Flächenanteilen</td>
<td>8</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>20% der FFH-Gebietsfläche</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>50% der VSG-Gebietsfläche</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100% der NSG-Gebietsfläche</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20% der LSG-Gebietsfläche</td>
<td>37</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>Kosten Kartierleistungen:</td>
<td>45</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>Kosten Fachbeitrag:</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gesamtkosten Fachbeitrag:</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Verträglichkeit nach § 34 BNatSchG</td>
<td>78</td>
<td>350</td>
</tr>
<tr>
<td></td>
<td>Untersuchungsfläche errechnet aus einer Korridorbreite von jeweils 1.000 m rechts und links der Trasse; evtl. Überlagerungen von FFH- und Vogelschutzgebieten wurden in Abzug gebracht</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Gesamtsumme Planungsleistungen

| **Tabelle 22 - Kostenabschätzung für UVS und naturschutzfachliche Planungsleistungen** |
| **Variante ABS Soltau - Langwedel** | 666 |
Die Kosten für die naturschutzfachlichen Kompensationsmaßnahmen sind unter Worst-Case-Bedingungen in der nachfolgenden Tabelle 23 dargestellt.

<table>
<thead>
<tr>
<th>Inhalt / Berechnung</th>
<th>Streckenlänge, gerundet [km]</th>
<th>Kosten [t€uro]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Szenario 1:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kosten für Ausgleichsmaßnahmen (errechnet über Streckenlänge und angenommene Eingriffsbreite von 16 m bei Kosten von 32,-- €uro pro m²)</td>
<td>33,8</td>
<td>17.300</td>
</tr>
<tr>
<td>Resultierende Gesamtkosten für Naturschutzmaßnahmen (errechnet aus den Kosten für Ausgleichsmaßnahmen, die nur 26 % der Gesamtkosten ausmachen)</td>
<td></td>
<td>66.600</td>
</tr>
<tr>
<td>Gesamtkosten:</td>
<td></td>
<td>66.600</td>
</tr>
<tr>
<td>Szenario 2:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gesamtkosten für Naturschutzmaßnahmen</td>
<td>33,8</td>
<td>35.000</td>
</tr>
</tbody>
</table>

Tabelle 23 - Kostenabschätzung für naturschutzfachliche Kompensationsmaßnahmen
Variante ABS Soltau - Langwedel
7.6.4 Kostenabschätzung für naturschutzfachliche Kompensationsmaßnahmen Ausbau der Strecke Soltau – Langwedel (1960) mit Anbindung an die NBS (Umfahrung von Soltau)

Die Kostenschätzungen für die umweltplanerischen Instrumente und deren Herleitung sind unter Worst-Case-Bedingungen in der Tabelle 24 dargestellt:

<table>
<thead>
<tr>
<th>#</th>
<th>Inhalt / Berechnung</th>
<th>Kalkulatorische Fläche [ha]</th>
<th>Kosten [t€uro]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Umweltverträglichkeitsstudie, Untersuchungsfläche errechnet aus einer Korridorbreite von jeweils 1.000 m rechts und links der Trasse</td>
<td>7.000</td>
<td>222</td>
</tr>
<tr>
<td>2</td>
<td>Eingriffsregelung, Untersuchungsfläche errechnet aus einer Korridorbreite von jeweils 500 m rechts und links der Trasse</td>
<td>3.500</td>
<td>45</td>
</tr>
<tr>
<td>3</td>
<td>Artenschutz-Fachbeitrag, Untersuchungsfläche errechnet aus einer Korridorbreite von 500 m rechts und links der Trasse mit folgenden Flächenanteilen: 7% der FFH-Gebietsfläche, 0% der VSG-Gebietsfläche, 16% der NSG-Gebietsfläche, 13% der LSG-Gebietsfläche, Kosten Kartierleistungen: 36, Kosten Fachbeitrag: 3, Gesamtkosten Fachbeitrag: 39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Verträglichkeit nach § 34 BNatSchG, Untersuchungsfläche errechnet aus einer Korridorbreite von jeweils 1.000 m rechts und links der Trasse; evtl. Überlagerungen von FFH- und Vogelschutzgebieten wurden in Abzug gebracht</td>
<td>87</td>
<td>395</td>
</tr>
</tbody>
</table>

Gesamtsomme Planungsleistungen 701

Tabelle 24 - Kostenabschätzung für UVS und naturschutzfachliche Planungsleistungen Variante ABS Soltau – Langwedel; Umfahrung Soltau
Die Kosten für die naturschutzfachlichen Kompensationsmaßnahmen sind unter Worst-Case-Bedingungen in der nachfolgenden Tabelle 25 dargestellt.

<table>
<thead>
<tr>
<th>Inhalt / Berechnung</th>
<th>Streckenlänge, gerundet [km]</th>
<th>Kosten [t€uro]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Szenario 1:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kosten für Ausgleichsmaßnahmen (errechnet über Streckenlänge und angenommene Eingriffsbreite von 16 m bei Kosten von 32,-- €uro pro m²)</td>
<td>34,0</td>
<td>17.400</td>
</tr>
<tr>
<td>Resultierende Gesamtkosten für Naturschutzmaßnahmen (errechnet aus den Kosten für Ausgleichsmaßnahmen, die nur 26 % der Gesamtkosten ausmachen)</td>
<td></td>
<td>67.000</td>
</tr>
<tr>
<td>Gesamtkosten:</td>
<td></td>
<td>67.000</td>
</tr>
<tr>
<td>Szenario 2:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gesamtkosten für Naturschutzmaßnahmen</td>
<td>34,0</td>
<td>35.200</td>
</tr>
</tbody>
</table>

Tabelle 25 - Kostenabschätzung für naturschutzfachliche Kompensationsmaßnahmen

Variante ABS Soltau – Langwedel; Umfahrung Soltau
7.7 Schalltechnische Untersuchung

7.7.1 Betroffenheiten

Unter Berücksichtigung von 10 % Scheibenbremsanteil bei Güterzügen und ohne Schienenbonus ergeben sich abschnittsbezogen folgende Umfänge an betroffenen Wohneinheiten (WE):

- ABS 1960 Soltau (e) – Visselhövede (e) 5.999 WE
- ABS 1960 Visselhövede (a) – Langwedel 604 WE
- ABS 1960 Umfahrung Soltau – Visselhövede (e) 1.950 WE
- NBS SGV Celle (e) – Soltau 17.330 WE
- NBS SGV Soltau – Abzw Maschen 1.253 WE

In Summe sind bei der Variante SGV-Y ca. 25.200 WE durch Schallimmissionen betroffen, bei einer Umfahrung von Soltau sind es ca. 21.100 WE.

7.7.2 Schallschutzmaßnahmen

Im Rahmen der Studie werden zur Einhaltung der Grenzwerte nachfolgende Lärmschutzwände ermittelt:

- ABS 1960 Soltau (e) – Visselhövede (e) 19.550 km
- ABS 1960 Visselhövede (a) – Langwedel 10.820 km
- ABS 1960 Umfahrung Soltau – Visselhövede (e) 15.200 km
- NBS SGV Celle (e) – Soltau 24.655 km
- NBS SGV Soltau – Abzw Maschen 5.710 km

In Summe ergeben sich bei der Variante SGV-Y Lärmschutzwände auf einer Länge von ca. 65 km, bei einer Umfahrung von Soltau sind es ca. 61 km.

Bringt man die abschirmende Wirkung der parallel verlaufenden BAB 7 nicht in Ansatz, würde sich die Lärmschutzwandlänge um ca. 5 km verlängern.
8 Beschreibung und Ergebnisse Variante ABS 1720

8.1 Verkehrsanlagen

8.1.1 Bahnhof Celle

Die zusätzliche Weichenverbindung für parallele Ein- und Ausfahrten von und nach Lehrte wurde im Bereich km 41,9 – km 42,1 unter Beachtung der im Projekt ESTW Celle zu bauenden Weichen 8 und 13 trassiert.

Abbildung 8 – Strecke 1720, zusätzliche Weichenverbindung km 41,9 – km 42,1

Am Gleis 1S befindet sich gegenwärtig ein Hausbahnsteig, der als Zugang zum Parkhaus genutzt wird. Der Neubau/Erweiterung des Bahnsteiges muss von der Personenunterführung beginnend in südliche Richtung erfolgen. Der sich nördlich befindliche Bogen mit R = 200 m lässt die Anordnung des Bahnsteiges mittig über der Personenunterführung nicht zu. Sollte eine mittige Anordnung gefordert werden, muss die gesamte Weichenstraße neu trassiert und in Folge dessen eine neue Eisenbahnüberführung über die Aller geplant werden.

Abbildung 9 – Strecke 1720, Bahnsteig km 43,3

Das neue Regionalgleis wurde über die Achse des Gleises 30a der Osthannoverschen Eisenbahn (OHE) parallel zu den bestehenden Fernbahngleisen geführt. Das neue Regionalgleis wird unter Berücksichtigung von Mastgassen für die Oberleitungsanlage und ggf. von Lärmschutzwänden neben den Fernbahngleisen angeordnet.

Nördlich des Bahnhofs Celle wird das bisher östlich bzw. bahnrechts geführte Regionalgleis unter höhenfreier Kreuzung des Fernbahngleises Süd/Nord in die Mitte verschwenkt. Das Überwerfungsbauwerk befindet sich ca. bei km 47,3. Es wurde eine Variante gewählt, bei der sich die Strecken in einem Winkel von 19 gon kreuzen. Eine engere Linienführung würde den notwendigen Grundwerk reduzieren, jedoch würden durch länger werdende Stützmauern die Baukosten steigen.

8.1.2 Dreigleisiger Ausbau Celle - Uelzen

Zusätzlich zu den beiden durchgängigen Hauptgleisen wurde bis zum Streckenabschnitt Unterlüß - Suderburg bahnrechts das dritte Gleis (neu: Fernbahngleis Süd/Nord) trassiert.

Im o.g. Streckenabschnitt wird ein vorhandener Bogen genutzt, um alle drei Gleise nach Westen zu verschwenken. Somit wurde ab hier das zusätzliche Gleis westlich bzw. bahnlinks als Fernbahngleis Nord/Süd trassiert.

8.1.3 Bahnhof Uelzen

Bei den Planungen wird davon ausgegangen, dass die Baumaßnahme Spurplananpassung Einbindung Uelzen (Str. 6899 km 106,655 – km 106,184 und Str. 1720 km 94,732 – km 95,094) abgeschlossen ist.

Abbildung 11 – Strecke 1720, Kreuzungsbauwerk südlich von Uelzen km 94,2

Das Gleis 4/104 wurde neu trassiert, um eine Durchfahrgeschwindigkeit von 100 km/h gewährleisten zu können.

Zwischen den Gleisen 105 und 106 wird ein neuer Bahnsteig mit 210 m Länge errichtet.

8.1.4 Streckenabschnitt Uelzen - Lüneburg

Mit dem ersatzlosen Rückbau aller Weichen im Bahnhof Deutsch Evern wird dieser als solches aufgelassen. Da keine Bahnsteige vorhanden sind, entfällt somit auch die Station.

Im Bereich der Bahnhöfe Bad Bevensen, Bienenbüttel und Deutsch Evern wurden zwei Varianten untersucht.

Variante 1:

Eins der beiden neu zu errichtenden Regional- bzw. Güterverkehrsgleise wird in der Achse der ehemaligen Überholungsgleise in einem Abstand von 4,50 m zum angrenzenden Fernbahngleis geführt. Dadurch wird der zusätzliche Flächenbedarf minimiert und somit z. B. die Auswirkungen auf das Umland gering gehalten.

Variante 2 (Vorzugsvariante):

Durch den größeren Gleisabstand im Bahnhof besteht ein erhöhter Flächenbedarf. Dies bedeutet, dass teilweise Gehöfte (z. B. bei km 99,500 und km 100,500), Wohnhäuser (z. B. bei km 102,740) und Gewerbeflächen (z. B. Düngerhalle und Silos bei km 102,150) sowie öffentliche Einrichtungen (z. B. Jugendzentrum Bienenbüttel bei km 118,220) rückgebaut werden müssen. Ggf. ist Ersatz zu schaffen.

8.1.5 Bahnhof Lüneburg

Um die Durchfahrung der Westseite mit 120 km/h realisieren zu können, müssen die stillgelegten Gleise und Weichen des ehemaligen Güterbahnhofs rückgebaut werden.

Im Bereich km 133,0 – km 133,170 ist der komplette Rückbau von Wohngebäuden und Nebengebäuden notwendig.

Abbildung 12 – Strecke 1720, Rückbau Wohnbebauung km 133,0 – 133,2

8.1.6 Viergleisiger Ausbau Streckenabschnitt Lüneburg - Ashausen

Neben dem dreigleisigen Ausbau, bei dem bahnlinks der Strecke, neben den beiden durchgehenden Hauptgleisen ein weiteres Gleis errichtet wurde, soll bahnrechts ein weiteres Regional-/Güterverkehrsgleis mit Richtungsbetrieb geschaffen werden. Die in den Bahnhöfen Winsen, Radbruch und Bardowick am Fernbahngleis Süd/Nord befindlichen Bahnsteige sollen an das neue Regional-/Güterverkehrsgleis verlegt werden.

Im Bahnhof Winsen/Luhe sind das denkmalgeschützte Empfangsgebäude und die Gebäude der Stadtwerke der Trasse des neuen Regional-/Güterverkehrsgleises im Wege. Es wurde nach Möglichkeiten gesucht, den Rückbau der Gebäude und der sehr teuren Wiedererrichtung an einer anderen Stelle zu umgehen. Dies wäre nur möglich wenn man die komplette Gleis- und Weichenan-

Abbildung 13 – Strecke 1720, Bardowick km 137,5

Bei km 134,365 ist der Mast einer 110 kV-Leitung umzusetzen, um das bahnrechte Regionalbahn­gleis (Süd/Nord) errichten zu können.

8.1.7 Kapazitätssteigernde Maßnahmen der Strecke 1720 im Bf Celle

Für die Untervariante ABS 1720 Uelzen – Ashausen ist im Bf Celle zusätzlich eine Kapazitätssteigernde Maßnahme an der Strecke 1720 erforderlich. Die Beschreibung der Maßnahme ist dem Punkt 0 zu entnehmen.
8.2 Ingenieurbauwerke

8.2.1 Bahnhof Celle

Im Bereich des Bahnhofs Celle werden die bestehenden Gleisanlagen genutzt. Aufgrund des neu zu errichtenden längeren Hausbahnsteiges werden die Bauwerke:

- Eisenbahnüberführung Fuhsekanal, km 43,872
- Eisenbahnüberführung Bahnhofstraße, km 43,989

angepasst und für die Aufnahme des Bahnsteiges erweitert.

Nördlich von Celle wird ein Überwerfungsbauwerk ca. bei km 47,3 erforderlich.

8.2.2 Dreigleisiger Ausbau Celle - Uelzen

In Bahnhofsbereichen werden teilweise die Bahnsteige sowie deren Zugänge angepasst.

8.2.3 Bahnhof Uelzen

Im Rahmen der Machbarkeitsstudie wurde berücksichtigt, dass die Baumaßnahme Spurplananpassung Einbindung Uelzen (Str. 6899 km 106,655 – km 106,184 und Str. 1720 km 94,732 – km 95,094) abgeschlossen ist.

Vor dem Bahnhof Uelzen werden konzentriert mehrere Ingenieurbauwerke erforderlich. Hierbei handelt es sich um Kreuzungsbauwerke der Strecke 1720 untereinander sowie ein Kreuzungsbauwerk mit der von Süden kommenden Strecke 6899. Die Kreuzungsbauwerke werden als Tunnelbauwerke einschließlich anschließenden Trog- und Stützbauwerken sowie als Rahmen ausgeführt.
Gleichzeitig führt in diesem Bereich die Bundesstraße B 71 über die Bestandsstrecken 1720 und 6899. Die Straßenüberführung wird durch drei einzelne Bauwerke ersetzt:

- nördliches Gleis als Rahmenbauwerk im westlichen Rampenbereich der Straße
- mittleren Gleise als Mehrfeldträger
- südliches Gleis als Rahmenbauwerk im östlichen Rampenbereich der Straße; Anlehnung an das Rahmenbauwerk aus der Spurplananpassung Einbindung Uelzen.

Zur Abfangung der Dammbereiche und der bebauten Flächen werden diverse Stützbauwerke in Uelzen angeordnet.

8.2.4 Streckenabschnitt Uelzen - Lüneburg

Im Streckenabschnitt Uelzen - Lüneburg wird beidseitig der vorhandenen Streckengleise jeweils ein weiteres Gleis für den Regional- und Güterverkehr errichtet. Die beiden mittleren Gleise dienen dem Fernverkehr.

Die Ingenieurbauwerke werden beidseitig verlängert bzw. erweitert; für die Straßenüberführungen werden Ersatzneubauten vorgesehen.

In den Bahnhofsbereichen werden teilweise die Bahnsteige, die Personentunnel und deren Zugänge angepasst.

8.2.5 Bahnhof Lüneburg

Im Bereich der Friedrich-Ebert-Brücke im km 130,328 werden durch die Straßenüberführung derzeit mehrere Gleisanlagen sowie die Ilmenau überquert. Die neuen Gleise werden in Bereichen zurückzubauender Gleisanlagen errichtet – es wird angenommen, dass der Neubau von Teilbereichen der Straßenüberführung erforderlich wird – hierbei wird vorausgesetzt, dass der westliche Teil der Brücke (Querung Ilmenau) bis zur Auffahrt des Pirolweges erhalten werden kann.

Im Folgenden werden überwiegend bestehende Bahnanlagen genutzt. Durch Umtrassierungen werden der Rückbau alter Bahngräber sowie der Neubau von Stützbauwerken erforderlich.

8.2.6 Viergleisiger Ausbau Streckenabschnitt Lüneburg – Ashausen

Bei dem bereits durchgeführten dreigleisigen Ausbau, bei dem bahnlinks neben den beiden durchgehenden Hauptgleisen ein weiteres Gleis errichtet wurde, soll bahnrechts ein weiteres Regional-/Güterverkehrsgleis errichtet werden.

Die Ingenieurbauwerke (Eisenbahnüberführungen, Durchlässe) werden auf der bahnrechten Seite verlängert bzw. erweitert; für die Straßenüberführungen werden Ersatzneubauten vorgesehen.

In den Bahnhofsbereichen werden teilweise die Bahnsteige, die Personentunnel und deren Zugänge erweitert.

Im Bereich km 136,900 – km 139,500 wird die parallel zur Bahntrasse verlaufende Autobahn BAB 39 um eine Fahrspurbreite seitlich verschoben werden. Die damit verbundenen Kosten für Ingenieurbauwerke sind in der Pauschale für die seitliche Verschiebung der Autobahn enthalten. Eine separate Untersuchung und Auflistung für die Bauwerke der BAB 39 wurde nicht betrachtet.

8.2.7 Kapazitätssteigernde Maßnahmen der Strecke 1720 im Bf Celle

Für die Untervariante ABS 1720 Uelzen – Ashausen ist im Bf Celle zusätzlich eine Kapazitätssteigernde Maßnahme an der Strecke 1720 erforderlich. Die Beschreibung der Maßnahme ist dem Punkt 00 zu entnehmen.

8.3 Anlagen der Leit- und Sicherungstechnik

8.3.1 Bahnhof Celle

Im Nordkopf des Bahnhofs Celle werden die Gleise 2, 3 und 30a der Osthannoverschen Eisenbahnen AG (OHE) für die Variante ABS 1720 genutzt. Hier sind mit der OHE Abstimmungen zum Verlauf von Zug- und Rangierstraßen sowie Schnittstellen erforderlich. Für den Kostenvergleich wurde im Bahnhof Celle ein neues ESTW-Modul für die Erweiterung vorgesehen. Bei Fortführung dieser Variante ist im weiteren Planungsfortschritt zu prüfen, ob die Erweiterungen für diese Variante im vorhandenen Modulgebäude des ESTW-UZ Celle (HC) (SB 4) integriert werden können.

8.3.2 Dreigleisiger Ausbau Celle - Uelzen (a)

Das neue (3.) Gleis wird mit Ks-Signalen und als Rückfallebene PZB im Blockabstand von 1,5 km von Celle bis Uelzen aufgebaut. Auf der Strecke ist LZB verlegt. Auch das dritte Gleis wird mit LZB für 200 km/h ausgerüstet.

Bahnhof Garßen

Der Bahnhof wird um das dritte Streckengleis erweitert und ein Bahnhofsgleis verändert. Für die Erweiterung wurde ein neues Modulgebäude vorgesehen.

Bahnhof Eschede

Bahnhof Unterlüß

Der Bahnhof wird um das dritte Streckengleis und ein Bahnhofsgleis erweitert. Für die Erweiterung ist ein neues Modulgebäude erforderlich.
Bahnhof Suderburg
Da zwei vorhandene Weichenverbindungen zurückgebaut und acht neue Weichen eingebaut werden, ändert sich die gesamte LST-Anlage im Bahnhof. Ein neues ESTW-Modul wird erforderlich, das alte wird zurückgebaut.

Bahnhof Klein Süstedt
Im Bahnhof Klein Süstedt wird ein Bahnhofsgleis zurückgebaut. Das neue Gleis wird als Streckengleis durch den Bahnhof hindurchgeführt. Die durch den Rückbau der Weichen im Modulgebäude frei werdenden Plätze werden für die neuen Blocksignale genutzt.

8.3.3 Bahnhof Uelzen

Die Trassierung eines neuen südlichen Bahnhofsgleises geht durch das Stellwerk Üf. Da nicht bekannt ist, ob und wo das vorhandene Modulgebäude zum Bauzeitraum steht, wurde in den Kosten als Variante die Umsetzung/Neubau eines ESTW-Moduls für den gesamten Bahnhof vorgesehen.

8.3.4 Streckenabschnitt Uelzen - Lüneburg
Der Verkehr erfolgt im Richtungsbetrieb. Die zwei neuen Gleise werden mit Ks-Signalen und PZB im Blockabstand von 1,5 km von Uelzen bis Lüneburg ausgestattet.

Bahnhof Bienenbüttel und Bahnhof Bad Bevensen
In diesen Bahnhöfen werden alle vorhandenen Weichenverbindungen zurückgebaut und neue Weichen in anderer Lage eingebaut. Damit ändert sich die gesamte LST-Anlage in beiden Bahnhöfen. Es wird jeweils ein neues ESTW-Modul aufgestellt, das alte wird zurückgebaut.

Deutsch-Evern

8.3.5 Bahnhof Lüneburg
Im Bahnhof Lüneburg werden zwei neue Bahnhofsgleise gebaut. In diesem Zusammenhang werden Weichenverbindungen ausgebaut und an anderer Stelle werden neue Weichen eingebaut. Für die zusätzlichen LST-Anlagen wird ein neues ESTW-Modul vorgesehen, das alte wird zurückgebaut.

8.3.6 Viergleisiger Ausbau Streckenabschnitt Lüneburg – Ashausen
Der Verkehr erfolgt im Richtungsbetrieb. Ein neues (4.) Gleis wird mit Ks-Signalen und PZB im Blockabstand von 1,5 km von Lüneburg bis Ashausen ausgestattet.
Bahnhof Bardowick

Es erfolgt der Rückbau aller vorhandenen Weichen. Acht neue Weichen werden eingebaut. Damit erneuern sich alle LST-Anlagen im Bahnhof, ein neues ESTW-Modul ist erforderlich, das alte wird zurückgebaut.

Bahnhof Radbruch

Bahnhof Winsen

Bahnhof Ashausen

Da die vorhandene Weichenverbindung zurückgebaut und acht neue Weichen eingebaut werden, ändert sich die gesamte LST-Anlage im Bahnhof. Ein neues ESTW-Modul wird aufgestellt, das alte wird zurückgebaut.

8.4 Oberleitungsanlage

8.4.1 Überwiegender Neubau der Bestandsoberleitung Strecke 1720

Bei der zu untersuchenden Variante ABS 1720 mit 3- bzw. 4-gleisigem Ausbau der Strecke 1720 ist bzgl. der Oberleitung Folgendes zu beachten:

Bei erheblichem Umbau (mehr als eine Kettenwerkslänge im Abschnitt betroffen) ist für den gesamten Abschnitt ein Umbau der Oberleitung unter Berücksichtigung der TEIV (TSI Energie ist anzuwenden!) erforderlich. Das bedeutet u.a., dass die Oberleitung im Bestand für eine Befahrung sowohl mit DB-Stromabnehmer als auch mit der schmalen Eurowippe umzubauen ist.

Nach gegenwärtigem Planungs- und Trassierungsstand wird durch folgende Maßnahmen ein erheblicher Umbau der Bestandsoberleitung auf der Strecke 1720 verursacht:

- Umtrassierung der Gleisanlagen in den Bahnhöfen,
- Auflösung von Querfeldern auf Grund von Überlastung bzw. zur Herstellung der Baufreiheit,
- Einbau von Gleiswechselverbindungen und sonstigen Weichen,
- Schaltungsänderungen der Oberleitung,
- Nachrüstung von Bahnenergieleitungen (Speiseleitungen, Verstärkungsleitungen etc.),
- Errichtung bzw. Umbau von Lärmschutzwänden,
- Rückbau von Bestandsgleisen und
- Bauzustände Verkehrs- und Oberleitung.

Die dann geforderte Realisierung der nach TSI Energie geringeren Fahrdrahtablenkung (Wind) führt voraussichtlich zu einer Neuaufteilung der Oberleitungs masten im Bestand und erzwingt hier den Komplettneubau der Oberleitung.
Bei der Entscheidung bzgl. des Neubaus der Oberleitungsanlagen im Bestand der Strecke 1720 wurde auch das Alter der Oberleitung von über 40 Jahren berücksichtigt.

8.4.2 Umbau der Querfelder Oberleitung im Bestand der Strecke 1720

Besonders zu beachten ist auch, dass der Umbau der bestehenden Querfelder und anderer statisch relevanter Anlagen unter Berücksichtigung der jetzt gültigen Europäischen Richtlinie für Oberleitung EN 50119 problematisch ist und im Einzelfall nachgewiesen werden muss. Es ist davon auszugehen, dass der Nachweis bestenfalls bei einer Reduzierung der Lasten, also bei einem Entfall von Gleisen gelingt. Dies ist jedoch in den Bahnhöfen der vorliegenden Variante ABS 1720 nicht gegeben.

Üblicherweise werden lediglich 80 % der horizontalen Schnittkräfte bei der Auslegung von Querfeldmittelmasten angesetzt. Daher ist eine einseitige Entlastung der Mittelmasten lediglich bauzeitlich zulässig. Für den Bahnhof Celle kann das z.B. bedeuten, dass die Auflösung der Querfelder über den HGV-Gleisen einen Ersatz der Querfeldmasten von 24 benachbarten Querfeldern zur Folge hat.

Es wird ausdrücklich darauf hingewiesen, dass für die Oberleitungsanlage im TEN HGV unter Quertragwerken keine Zertifizierung vorliegt. Die Genehmigung im EG-Prüfverfahren bzw. durch die benannte Stelle (z.B. EBC) ist fraglich.

In den Kosten für die Variante ABS 1720 wurde daher der komplette Umbau der Oberleitungsanlage berücksichtigt.

8.4.3 Jochbauweise der Oberleitung

Falls die Einrichtung der für die Einzelmastbauweise erforderlichen Mastgassen nicht möglich ist, können Joche als Quertrageinrichtungen der Oberleitung ohne Beantragung einer UiG bereits jetzt verwendet werden. Da die Jochbauweise noch nicht im Regelwerk der Oberleitung (insbesondere in der Ebs) geregelt ist, muss für jedes Joch ein statischer Einzelnachweis geführt werden.

8.4.4 Anlagen der DB Energie

Nachfolgende Anlagen müssen neu, ertüchtigt oder umgebaut werden:

- Neubau Schaltposten Maschen mit zusätzlichem Abzweig Oberleitung
- Erweiterung Unterwerk Lüneburg um 2 Abzweige Oberleitung
- Erweiterung Unterwerk Uelzen um 2 Abzweige Oberleitung
- Ertüchtigung/Erweiterung (Neubau 15-kV-Schaltanlage) Unterwerk Garßen
- Neubau Schaltposten Celle mit Bahnhofs-Abzweig und zusätzlichem Abzweig Oberleitung
- Ertüchtigung/Erweiterung Fernwirkanlagen Oberleitung

Eine Zugfahrtsimulation war aufgrund fehlender Zugmengen nicht möglich.
Aus heutiger Sicht und der uns vorliegenden Unterlagen werden vsl. keine Verstärkungsleitungen benötigt.

8.4.5 Bahnenergieleitungen

8.4.6 Schaltkonzept Oberleitung

Die Schaltung der Oberleitung wird nach netz- und bahnbetrieblichen, wirtschaftlichen, schutztechnischen sowie oberleitungstechnischen Aspekten geplant. Bei Neubaumaßnahmen oder umfangreichen Umbaumaßnahmen sind die Entwürfe der Oberleitungsschaltpläne der Zentrale der DB Energie und der Zentrale der DB Netz AG, I.NVT, zur Prüfung vorzulegen (siehe 997.0301 Abs. 5 (1)).

Der Anordnung von Schaltern und Schaltgruppen wird die konzerninterne Ril 997.03 zu Grunde gelegt. Zur Erhöhung der Verfügbarkeit werden in den Bahnhöfen Längstrennungen der Oberleitungen gemäß Ril 997.03 vorgesehen. An sämtlichen geplanten Überleitstellen werden ebenfalls schaltbare Streckentrennungen ausgeführt.

Zur Gewährleistung der Verfügbarkeit soll jede Oberleitungsschaltgruppe über mindestens zwei unabhängige Einspeisungen verfügen.

Für die Speisung von Weichenheizanlagen und die Versorgung der Netzersatzanlagen der ESTW-Module aus der Oberleitung werden zahlreiche Masttrennschalter errichtet. Die Planungsschnittstelle zum Gewerk Starkstromanlagen (50 Hz) ist der Freiluftkabelendverschluss auf dem Oberleitungs mast.

8.4.7 Bauart Oberleitung

Die durchgehenden Hauptgleise werden einschließlich der Weichenverbindingen unabhängig von der Streckengeschwindigkeit in der Bauart Re 200i (Eurowippe), die Überholgleise der Überholbahnhöfe in der Bauart Re 100i (Eurowippe) überspannt.

Die genannten Bauarten erlauben den Einsatz des DB-Standard-Stromabnehmers (Stromabnehmer TYP 1.950) sowie der interoperablen Eurowippe (Stromabnehmer TYP 1.600).
Die gesamten Oberleitungsanlagen werden für einen Temperaturbereich von 100 K ausgelegt. Bei der Planung der Oberleitung wird die in Ebs 02.05.32 genannte Bemessungswindgeschwindigkeit von 26 m/s zu Grunde gelegt.

8.4.8 Maste und Fundamente

Die Oberleitungsmaste werden gemäß Ril 997.01 vorzugsweise in Betonbauweise ausgeführt. In beengten Bereichen des ABS wird die Errichtung von Peinermasten befürwortet.

Im Bauvorhaben werden keine Rückanker für neue Oberleitungsmaste geplant. Die Dimensionierung der Maste wird entsprechend Belastung ohne Rückanker angesetzt.

Die Oberleitungsmaste werden im Bereich des Bauvorhabens Ebs-konform und gemäß Ril 997.01 neu nummeriert und vor Ort beschildert.

Gemäß Ril 997.01 werden vorzugsweise Rammgründungen ausgeführt.

8.4.9 Sicherung Oberleitungsmasten im Bereich von Tiefbauarbeiten

8.4.10 Oberleitung im Bereich der Bahnsteige

Die Bereiche oberhalb der Bahnsteige werden spannungsfrei gestaltet.

Grundsätzlich werden keine Streckentrennungen oder Masttrennschalter im Bereich der Bahnsteige geplant.
8.4.11 Längskettenwerke

Im Bereich der Bahnübergänge werden Kettenwerksanhebungen realisiert so dass die minimale Fahrdrahthöhe von 5,50 m unter Berücksichtigung der Zusatzlasten über der kreuzenden Straße nicht unterschritten wird.

Über die lichten Höhen der Kreuzungsbauwerke liegen derzeit keine Angaben vor.

Für die im Zuge des Streckenausbaus geplanten Straßenüberführung beträgt die minimale lichte Höhe der Bauwerke gemäß Ril 997.01 mindestens 5,70 m über Schienenoberkante.

Die minimale lichte Höhe von 5,70 m über Schienenoberkante gilt ebenfalls für geplante Überführungen im Bereich der NBS (v< 200 km/h).

Die ggf. erforderlichen Kettenwerksabsenkungen werden unter Beachtung der für die Befahrgeschwindigkeit maximal zugelassenen Fahrdrahtneigungen gemäß Ril 997.01 errichtet. Diese beträgt in den Hauptgleisen 1:500, die maximal zulässigen Übergangsneigungen 1:1000 (Re 200 Ebs).

Bei der Ermittlung von Fahrdrahtabsenkungen wird eine Mindestfahrdrahthöhe (auch bei Eislast) von 5,05 m zu Grunde gelegt.

8.4.12 Oberleitungsschalter

Die Masttrennschalter der Hauptstrombahn werden als Schalter mit einem Nennstrom von 1.700 A Dauerstrom mit Verbundisolatoren und Linienkontakten nach Ebs 09.08.10 ausgeführt. Durch die verlängerte Ausführung der Isolatoren wird der Vogel- und Kleintierschutz gewährleistet.

Abgesetzte Schalter werden als Lasttrennschalter mit Vakuumlöschkammer (Id= 2000 A) gemäß Ebs 09.04.20 (Driescherschalter) ausgeführt.

Für Hauptstrombahnen werden die Schalterquerleitungen und Stromverbinder mit einem Querschnitt von 120 mm² ausgeführt. Es wird generell Presstechnik vorgesehen.

8.4.13 Vogel- und Kleintierschutz

Im Bereich des Bauvorhabens werden die Isolatoren der Ausleger und Festpunktanker mit Elektrostatischem Vogelabweiser, gemäß 4Ebs 19.01.28 ausgerüstet. Bei den Isolatoren der Längskettenwerke wird auf Vogel und Kleintierschutz verzichtet.

8.4.14 OSE-Kabelanlagen

Für die Steuerung der Masttrennschalter werden sämtliche OSE Kabelanlagen neu errichtet und an die seitens der DB Energie ebenfalls neu zu errichtenden Fernwirk-Unterstation angeschlossen. Auch die trotz des o.g. Neubaus der Bestandsoberleitung ggf. noch verbleibenden Oberleitungs-Masttrennschalter werden an die neuen Fernwirk-Unterstationen über neue Steuerkabelanlagen OSE angeschlossen.
Schnittstellen für die OSE-Außencableanlagen sind die Hauptklemmleisten (HX 1) der Fernwirkunterstation für die Steuerung der Oberleitungsschalter und die Klemmleisten der Mastschalterantriebe. Die Planung und Realisierung der OSE-Fernwirkunterstation und der HX 1-Klemmleisten erfolgen in Zuständigkeit der DB Energie.

Die Oberleitungsmasttrennschalter werden gemäß Baufortschritt und unter Nutzung bestehender bzw. neu zu errichtender Kabeltrassen an die Fernwirk-Unterstationen angeschlossen.

Auf Grund der mechanischen Anforderungen und im Interesse einheitlicher Kabeltypen werden für die OSE-Außenanlagen Kabel mit einem Aderquerschnitt von mindestens 2,5 mm² eingesetzt. Da die Anlage als isoliertes Netz (IT-Netz) betrieben wird, werden Kabel vom Typ NYY-O verwendet.

Bei der Dimensionierung der OSE-Kabeltypen werden für jeden OL-Schalter 4 Adern (Ein, Aus, L2 und Reserve) und für jeden Kurzschluss-Meldewandler (KMW) 3 Adern (Ein, Aus und Reserve) entsprechend Ril 997.9118 berücksichtigt.

Gemäß Abstimmungen mit der DB Netz AG soll die maximale Aderzahl 14 nicht überschreiten.

Bis auf wenige Stichkabeltrassen, die im Rahmen der Entwurfsplanung noch festzulegen sind, werden hierfür die Kabeltrassen der Leit- und Sicherungstechnik genutzt.

Die Schalter der Weichenheizung und Netzersatzanlagen werden gemäß TU 954.9101 nicht auf die Fernwirk-Unterstation OSE geschaltet. Die Steuerung dieser Schalter gehört ab Klemmkasten am Mast zum Leistungsumfang Starkstrom.

8.4.15 Fernwirkunterstation OSE

Für die Ansteuerung der Masttrennschalter werden neue Fernwirk-Unterstationen OSE vorzugsweise in den bestehenden bzw. neu geplanten ESTW-Module installiert und in die Fernwirklinie eingebunden.

8.4.16 Zentrale Schaltstelle der Oberleitung (ZES)

Die Zentrale Schaltstelle der Oberleitung (Zes) in Lehrte wird mit dem vorliegenden Bauvorhaben für die Steuerung der neuen Oberleitungsschaltung konfiguriert und parametriert.

8.4.17 Erdungsanlagen im Oberleitungsbereich

Die Erdungs- und Rückleitungsanlagen werden im gesamten Bauvorhaben gemäß Ril 997.02 ff. sowie Technischer Mitteilung TM 2008 - 064 L.NVT 4 E unter Verwendung von flexiblen Stahlsaiten nach Ebs 20.01.02 mit Querschnitt 1x95 mm² ausgeführt (Diebstahlschutz).

Die bestehenden Erdungs- und Rückleitungsanlagen werden auf Grund des erheblichen Umbaus und wegen der Komplettneuerung der Oberleitung ebenfalls erneuert.

Beider Planung und Errichtung von Erdungsanlagen im Bereich der Oberleitung wird ein Kurzschlussstrom gemäß den Vorgaben von DB Energie zu Grunde gelegt.

Die Ausführung von Schutzmaßnahmen zu aktiven Teilen der Oberleitung (am Bauwerk, Vergitterungen, usw.) muss nach 3 Ebs 02.05.34 sowie nach 2 Ebs 15.01.09 erfolgen.

Erdungen der Oberleitungsmaste werden im Bereich der Bahnsteige und Zugänge doppelt ausgeführt.

Rückleitungsanlagen sowie Erdungsanschlüsse von Schutzmaßnahmen dürfen auch durch bauzeitliche Oberbaumaßnahmen (Rückbau von Weichen und Gleisen) nicht außer Betrieb genom-
men werden. Es werden ggf. bauzeitliche Ersatzmaßnahmen (Sammelruder, zusätzliche Rücklei-
tungsmaschungen, bauzeitliche Schienenlängsverbinder, Parallele Rückleiter) vorgesehen und
im Rahmen der Entwurfs- sowie der Ausführungsplanung geplant.
Sämtliche Fertigteil-Bahnsteigelemente sowie die Ausstattung, soweit sie im Rissbereich der Ober-
leitung liegen, werden entsprechend Ril 997 geerdet.

8.4.18 Baubetriebstechnologie

Bei der Variante ABS 1720 führt die Errichtung neuer Gleise sowie der erhebliche Umbau im Be-
reich der Bestandsanlagen der Strecke 1720 zu massiven baubetrieblichen Einschränkungen und
dadurch bedingt zu erhöhten Umbarkosten und Baurisiken.
Da ein dauerhafter elektrischer Betrieb gefordert wird, sind bauzeitliche Zwischenzustände der
Oberleitung einschl. verlorener Investitionen für Interimszustände nicht vermeidbar.
Bei der stufenweisen Errichtung der neuen Oberleitungsanlagen sind insbesondere die Bauzu-
stände gemäß der Bautechnologie zu beachten. In der Planung sind daher Maststandorte so zu
wählen, dass diese sowohl für Bauzustände als auch für den Endzustand verbleiben können.
Seitens des Betriebes wird für die Dauer des Bauvorhabens ein elektrischer Betrieb mindestens
eines mit Oberleitung überspannten Gleises gefordert.
Vor Beginn der Gleismaßnahmen wird das Baufeld beräumt. Für evtl. bestehende Oberlei-
tungsanlagen (insbesondere Oberleitungsmaste im Baufeld) werden Ersatzmaßnahmen erforder-
llich.
Die geplanten Bauweichen werden bauzeitlich elektrisch überspannt.
Zur Vermeidung von Zerstörungen durch Baufahrzeuge werden die unteren Richtseile der bauzeit-
lich noch vorhandenen Querfelder im Bereich des Baufeldes und von Bastraßen durch Barken
(rot/weiß) gekennzeichnet.
Sollte die bauzeitliche Stilllegung der Strecke 1720 auf Grund der betrieblichen Anforderungen
nicht möglich sein, werden für Umbau, Regulierung und Rückbau von Querfeldern zahlreiche
nächtliche Totalsperrungen für die Oberleitung benötigt.
Die bauzeitlich verbleibenden Querfelder werden nach Teilrückbau von Längskettenwerken unter
Verwendung von Ausgleichgewichten (Beton) reguliert.
Nach erfolgtem Gleisrückbau ist die Bahnerdung der verbleibenden Maste, die weiterhin zur Be-
triebsanlage gehören, sicherzustellen. Die Rückstromführung ist in allen Bauzuständen zu gewähr-
leisten.
Die Erdungs- und Rückleitungsanlagen werden im Zuge des Baufortschrittes so angepasst und
erneuert, dass eine Erdung an den im jeweiligen Bauzustand im Betrieb verbleibenden Gleisen
sichergestellt wird. Insbesondere ist hierbei die Erdung der Anlagen im Rissbereich von unter
Spannung stehenden Fahrleitungen zu beachten. Bauzeitlich verbleibende Richtseile werden im
Bereich zurückgebauter Kettenwerke geerdet.

8.4.19 Kapazitätssteigernde Maßnahmen der Strecke 1720 im Bf Celle

Für die Untervariante ABS 1720 Uelzen – Ashausen ist im Bf Celle zusätzlich eine Kapazitätsstei-
gernde Maßnahme an der Strecke 1720 erforderlich. Die Beschreibung der Maßnahme ist dem
Punkt 00 zu entnehmen.
8.5 Elektrotechnische Anlagen für Licht- und Kraftstrom

8.5.1 Abschnitt Celle (e) – Uelzen (a)

Energieversorgung:

Elektrische Weichenheizanlagen:
Die im Projekt ESTW Celle geplanten Elektrischen Weichenheizanlagen werden wegen der zusätzlichen Heizleistungen für die neuen Weichen umgerüstet. Dabei werden die vorhandenen Trafos gegen Trafos mit höherer Leistung ausgetauscht und die Schaltanlagen für die zusätzlichen Abgänge erweitert.

Bahnsteigbeleuchtungsanlagen und Ausrüstungen:

Gleisfeldbeleuchtungsanlagen:
Die durch den Ausbau der Gleisanlagen betroffenen Gleisfeldbeleuchtungsanlagen im Bahnhof Celle werden angepasst. Im Rahmen der weiteren Planungsphasen ist zu prüfen, ob die Anlagen der Gleisfeldbeleuchtung zu erneuern bzw. wegen der neuen Dienstwege zu erweitern sind. Hierzu sind die Anlagenverantwortlichen und der Betreiber hinzuzuziehen.
8.5.2 Abschnitt Uelzen (e) – Lüneburg (a)

Energieversorgung:

Elektrische Weichenheizanlagen:

Bahnsteigbeleuchtungsanlagen und Ausrüstungen:

Gleisfeldbeleuchtungsanlagen:
Die durch den Ausbau der Gleisanlagen betroffenen Gleisfeldbeleuchtungsanlagen im Bahnhof Uelzen werden angepasst. Im Rahmen der weiteren Planungsphasen ist zu prüfen, ob die Anlagen der Gleisfeldbeleuchtung zu erneuern bzw. wegen der neuen Dienstwege zu erweitern sind. Hierzu sind die Anlagenverantwortlichen und der Betreiber hinzuwuziehen.

8.5.3 Abschnitt Lüneburg (e) - Ashausen (e)

Energieversorgung:

Elektrische Weichenheizanlagen:

Bahnsteigbeleuchtungsanlagen und Ausrüstungen:
Die Beleuchtungsanlagen der bestehenden Bahnsteige, die durch den Bau des neuen Gleises nicht betroffen sind, werden weiter genutzt.
Im Bahnhof Ashausen erfolgt die Anpassung der Geometrie des Bahnsteiges 2 zum neuen Gleis. Dabei ist zu untersuchen, ob die vorhandene Beleuchtungsanlage dieses Bahnsteiges angepasst und beibehalten werden kann. Wenn es nicht möglich, erfolgt dann der Ersatzneubau der Beleuchtungsanlage dieses Bahnsteiges.

Gleisfeldbeleuchtungsanlagen:
Die durch den Ausbau der Gleisanlagen betroffenen Gleisfeldbeleuchtungsanlagen im Bahnhof Lüneburg werden angepasst. Im Rahmen der weiteren Planungsphasen ist zu prüfen, ob die Anlagen der Gleisfeldbeleuchtung zu erneuern bzw. wegen der neuen Dienstwegen zu erweitern sind. Hierzu sind die Anlagenverantwortlichen und der Betreiber hinzuzuziehen.
8.6 Naturschutz

8.6.1 Qualitative Risikobewertungen betroffener Schutzgebiete

In der nachfolgenden Tabelle 26 sind die im geplanten Trassenbereich identifizierten Schutzgebiete gelistet.

<table>
<thead>
<tr>
<th>Schutzgebietstyp</th>
<th>ABS 1720 Celle (e) – Uelzen (a) [km]</th>
<th>ABS 1720 Uelzen (e) – Ashausen (e) [km]</th>
<th>Summe [km]</th>
</tr>
</thead>
<tbody>
<tr>
<td>FFH</td>
<td>1,420</td>
<td>4,920</td>
<td>6,340</td>
</tr>
<tr>
<td>HQSG</td>
<td>0</td>
<td>10,170</td>
<td>10,170</td>
</tr>
<tr>
<td>LSG</td>
<td>27,190</td>
<td>15,110</td>
<td>42,300</td>
</tr>
<tr>
<td>NSG</td>
<td>1,200</td>
<td>4,100</td>
<td>5,300</td>
</tr>
<tr>
<td>ÜBSchG</td>
<td>0,100</td>
<td>0</td>
<td>0,500</td>
</tr>
<tr>
<td>VSG</td>
<td>2,940</td>
<td>0</td>
<td>2,940</td>
</tr>
<tr>
<td>WSG</td>
<td>15,640</td>
<td>15,510</td>
<td>31,150</td>
</tr>
<tr>
<td>Summe</td>
<td>48,490</td>
<td>50,210</td>
<td>98,700</td>
</tr>
</tbody>
</table>

Tabelle 26 - Identifizierte Schutzgebiete Variante ABS 1720
8.6.2 Kostenabschätzung für naturschutzfachliche Kompensationsmaßnahmen

ABS Celle – Uelzen

Die Kostenschätzungen für die umweltplanerischen Instrumente und deren Herleitung sind unter Worst-Case-Bedingungen in der Tabelle 27 dargestellt:

<table>
<thead>
<tr>
<th>#</th>
<th>Inhalt / Berechnung</th>
<th>Kalkulatorische Fläche [ha]</th>
<th>Kosten [t€uro]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Umweltverträglichkeitsstudie
Untersuchungsfläche errechnet aus einer Korridorbreite von jeweils 1.000 m rechts und links der Trasse</td>
<td>10.000</td>
<td>297</td>
</tr>
<tr>
<td>2</td>
<td>Eingriffsregelung
Untersuchungsfläche errechnet aus einer Korridorbreite von jeweils 500 m rechts und links der Trasse</td>
<td>5.000</td>
<td>57</td>
</tr>
<tr>
<td>3</td>
<td>Artenschutz-Fachbeitrag
Untersuchungsfläche errechnet aus einer Korridorbreite von 500 m rechts und links der Trasse mit folgenden Flächenanteilen
20% der FFH-Gebietsfläche
50% der VSG-Gebietsfläche
100% der NSG-Gebietsfläche
20% der LSG-Gebietsfläche
Kosten Kartierleistungen:
Kosten Fachbeitrag:
Gesamtkosten Fachbeitrag:</td>
<td>22
203
5
326
556
556
556</td>
<td>297
203
5
326
556
556
605</td>
</tr>
<tr>
<td>4</td>
<td>Verträglichkeit nach § 34 BNatSchG
Untersuchungsfläche errechnet aus einer Korridorbreite von jeweils 1.000 m rechts und links der Trasse; evtl. Überlagerungen von FFH- und Vogelschutzgebieten wurden in Abzug gebracht</td>
<td>1.297</td>
<td>233</td>
</tr>
</tbody>
</table>

Gesamtsumme Planungsleistungen

1.192

Tabelle 27 - Kostenabschätzung für UVS und naturschutzfachliche Planungsleistungen

Variante ABS Celle - Uelzen
Die Kosten für die naturschutzfachlichen Kompensationsmaßnahmen sind unter Worst-Case-Bedingungen in der nachfolgenden Tabelle 28 dargestellt.

<table>
<thead>
<tr>
<th>Inhalt / Berechnung</th>
<th>Streckenlänge, gerundet [km]</th>
<th>Kosten [t€uro]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Szenario 1:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kosten für Ausgleichsmaßnahmen (errechnet über Streckenlänge und angenommene Eingriffsbreite von 16 m bei Kosten von 32,-- €uro pro m2)</td>
<td>52,4</td>
<td>26.800</td>
</tr>
<tr>
<td>Resultierende Gesamtkosten für Naturschutzmaßnahmen (errechnet aus den Kosten für Ausgleichsmaßnahmen, die nur 26 % der Gesamtkosten ausmachen)</td>
<td>103.200</td>
<td></td>
</tr>
<tr>
<td>Gesamtkosten:</td>
<td></td>
<td>103.200</td>
</tr>
<tr>
<td>Szenario 2:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gesamtkosten für Naturschutzmaßnahmen</td>
<td>52,4</td>
<td>54.300</td>
</tr>
</tbody>
</table>

Tabelle 28 - Kostenabschätzung für naturschutzfachliche Kompensationsmaßnahmen
Variante ABS Uelzen – Ashausen
8.6.3 **Kostenabschätzung für naturschutzfachliche Kompensationsmaßnahmen**

ABS Uelzen – Ashausen

Die Kostenschätzungen für die umweltplanerischen Instrumente und deren Herleitung sind unter Worst-Case-Bedingungen in der Tabelle 29 dargestellt:

<table>
<thead>
<tr>
<th>#</th>
<th>Inhalt / Berechnung</th>
<th>Kalkulatorische Fläche [ha]</th>
<th>Kosten [t€uro]</th>
</tr>
</thead>
</table>
| 1 | Umweltverträglichkeitsstudie
 Unter suchungsfl äche errechnet aus einer Korridor-
 breite von jeweils 1.000 m rechts und links der Trasse | 12.500 | 417 |
| 2 | Eingriffsregelung
 Unter suchungsfl äche errechnet aus einer Korridor-
 breite von jeweils 500 m rechts und links der Trasse | 6.200 | 64 |
| 3 | Artenschutz-Fachbeitrag
 Unter suchungsfl äche errechnet aus einer Korridor-
 breite von 500 m rechts und links der Trasse mit fol-
genden Flächenanteilen
 20% der FFH-Gebietsfläche | 99 | |
 50% der VSG-Gebietsfläche | 0 | |
 100% der NSG-Gebietsfläche | 108 | |
 20% der LSG-Gebietsfläche | 170 | |
 Kosten Kartierleistungen: | 377 | 377 |
 Kosten Fachbeitrag: | 377 | 38 |
 Gesamtkosten Fachbeitrag: | | 415 |
| 4 | Verträglichkeit nach § 34 BNatSchG
 Unter suchungsfl äche errechnet aus einer Korridor-
 breite von jeweils 1.000 m rechts und links der Tras-
 se; evtl. Überlagerungen von FFH- und Vogelschutz-
 gebieten wurden in Abzug gebracht | 1.032 | 186 |

Gesamtsumme Planungsleistungen

1.082

Tabelle 29 - Kostenabschätzung für UVS und naturschutzfachliche Planungsleistungen

Variante ABS Uelzen – Ashausen
8.7 Schalltechnische Untersuchung

8.7.1 Betroffenheiten

Unter Berücksichtigung von 10 % Scheibenbremsanteil bei Güterzügen und ohne Schienenbonus ergeben sich abschnittsbezogen folgende Umfänge an betroffenen Wohneinheiten (WE):

- ABS 1720 Celle (e) – Uelzen (a) 17.455 WE
- ABS 1720 Uelzen (e) – Ashausen (e) 35.207 WE

In Summe sind bei der Variante ABS 1720 ca. 52.700 WE durch Schallimmissionen betroffen.

8.7.2 Schallschutzmaßnahmen

Unter Berücksichtigung von 10 % Scheibenbremsanteil bei Güterzügen und ohne Schienenbonus werden an den betrachteten Strecken folgende Lärmschutzwände erforderlich:

- ABS 1720 Celle (e) – Uelzen (a) 10,940 km
- ABS 1720 Uelzen (e) – Ashausen (e) 42,430 km

In Summe ergeben sich bei der Variante ABS 1720 Lärmschutzwände auf einer Länge von ca. 54 km.
Beschreibung und Ergebnisse Variante NBS Ashausen – Suderburg/Unterlüß

9.1.1 Verkehrsanlagen

NBS Unterlüß – Ashausen

Südlicher Abzweig NBS im Bf Unterlüß

Der südliche Beginn der NBS liegt im Bf Unterlüß in etwa mittiger Lage zwischen Celle und Uelzen. Der Abzweig aus der Bestandsstrecke ist zur Erhöhung der betrieblichen Wirkung möglichst weit im Süden angeordnet. Aus diesem Grund wurde die ebenfalls mögliche, vsl. kostengünstigere Variante des Abzweigs in Suderburg nicht weiter untersucht.

Die Bestandsstrecke zweigt in km 73,1 ohne Einschränkung der Geschwindigkeiten ab. Dafür werden Hochgeschwindigkeitsweichen als Regelbauart der Grundform 60-7000/6000-1:42 fb geplant. Das bahnlinke Gleis der Bestandsstrecke wird mit einer Überwerfung über die NBS geführt. Die NBS-Gleise nutzen die freie Trasse, die mit der Linienverbesserung der Strecke 1720 hergestellt wurde.

Die niveaufreie Kreuzung der NBS mit dem Gegenrichtungsgleis der Strecke 1720 wird dadurch realisiert, dass das nach Nordwesten zu verschwenkende Bestandsstreckengleis auf einem Dammbauwerk die geländegleich verlaufende NBS überquert.

Der Gleisanschluss IG Rheinmetall wird angepasst, das Ladegleis 4 wird wegen der Überwerfung rückgebaut.

NBS Unterlüß – Ashausen

Das Werksgelände der Rheinmetall GmbH wird südlich passiert, so dass die Gleise zunächst in Bündelung mit einer Hochspannungstrasse und dann östlich parallel zu den Kreisstraßen K 47, K9 und K32 verlaufen. Der Kreisbogen bis km 12 lässt eine Geschwindigkeit von 250 km/h zu. Ab der anschließenden Gerade ist die Strecke für 300 km/h trassiert.

Der Trassierungsverlauf bis zum Übf Wetzen bei km 40 versteht sich als Kompromiss zwischen möglichst geringen Eingriffen in Waldbäumen bzw. Schutzgebiete und möglichst großen Entfernungen zu bebauten Ortslagen. Maßgebend ist hier das Wasserschutzgebiet Amelinghausen, das östlich tangiert wird. Ab der Stadt Amelinghausen, die östlich passiert wird, verläuft die Trasse in einem Abstand von etwa 2,5 km parallel östlich der Luhe (FFH-Gebiet).

Der Übf Wetzen bei km 40 liegt südlich außerhalb des Wasserschutzgebiet Westergellersen, das im weiteren Streckenverlauf gekreuzt wird. Sowohl betrieblich als auch topographisch wäre die Lage weiter nördlich (dann im WSG) sinnvoller. Dies wurde jedoch verworfen, da die Anordnung eines Bahnhofs im WSG erwartungsgemäß schwer durchzusetzen ist, selbst wenn dieser planmäßig nicht zum Abstellen von Zügen genutzt wird.

Ab km 45 verläuft die Trasse in geschwungener Linienführung mit möglichst großer Entfernung zur Luhe und zum Ort Vierhöfen sowie den weiter östlich liegenden Heiden und Magerrasenflächen. Zwischen km 56,5 und 58 quert die Trasse das FFH- und Überschwemmungsschutzgebiet der Luhe. Aufgrund der Streckenführung mittig zwischen den Orten Luhdorf und Bahldorf muss die

Der Bogen ab der Überführung über die BAB A 39 bei km 60 bis zum Bf Ashausen ist für 250 km/h trassiert. Der maßgebende Zwangspunkt ist hier die Bebauung der Ortschaft Grevelau. Da die Strecke zur Überquerung der Luhe und der A 39 in Dammlage liegt, ist die niveaufreie Einbindung in den Bf Ashausen mit einer Überwerfung der NBS über die Bestandsstrecken 1720 bzw. 1153 geplant.

Nördlicher Abzweig NBS im Bf Ashausen

Die Abzweigweichen der Strecke 1720 werden analog Bf Unterlüß für v=200 km/h mit Weichen der Regelbauart 60-7000/6000-1:42 fb geplant. In Richtung Winsen/Lüneburg werden die Bestandsgleise der Strecken 1720 und 1153 weiträumig verschwenkt. Entsprechend der Abzweigrichtung der NBS muss die Bestandsstrecke in südliche Richtung verschwenkt werden. Kritisch ist hierbei die Lage im Wasserschutzgebiet Ashausen, der Abstand zum nächsten Brunnen (Schutzzone I) beträgt im geplanten Zustand nur noch etwa 50 m.

Die Gleislage im Bereich der Überwerfung mit der NBS wurde für die Strecke 1720 mit 200 km/h sowie für die Strecke 1153 für 160 km/h so geplant, dass der östliche Anschluss an den Bestand unter der Straßenüberführung (SÜ) L 217 (Winsen – A 39) bei km 152,9 erreicht wird. Dies gelingt allerdings nur unter Ausnutzung des Ermessensbereichs der Trassierungsparameter für das Gegengleis der Strecke 1720 in Form von maximaler Überhöhung mit maximal zulässigem Überhöhungsfehlbetrag sowie unter Verwendung von Bloss-Übergangsbögen. Verbesserungen lassen sich in diesem Spurplanentwurf mit Reduzierung der Streckengeschwindigkeit auf 160 km/h oder mit Erneuerung der SÜ L 217 erreichen.

Gleisgeometrisch bedingt wird das Richtungsgleis der Strecke 1720 ab km 153,3 nach Westen verschwenkt. Die Trassierung sollte in den weiteren Planungen so geändert werden, dass zwischen km 153,8 und 154,4 das Bestandsgleis der Strecke 1153 genutzt werden kann. Der in dem jetzigen Planungsstand recht umfangreich dargestellte Umbau der Bestandsgleise kann in Abwägung der Anordnung der Weichenverbindungen sowie bei Verzicht der Anhebung der Geschwindigkeit im Bestand auf 230 km/h reduziert werden. Die beiden Bestandsgleise der Strecke 1720 können zwischen km 153,5 und 154,5 rückgebaut werden.
Kapazitätssteigernde Maßnahmen der Strecke 1720 im Bf Celle

Im Bf Celle müssen die auf der Strecke 1720 in Richtung Lehrte/Hannover fahrenden Züge die Strecke 1710 niveaugleich kreuzen. Zur Entflechtung der verkehre der beiden Strecken und zur Schaffung zusätzlicher Kapazitäten in Folge der NBS Ashausen - Unterlüß soll auf der Westseite das Gleis 28 auf der Trasse der inzwischen zurückgebauten Strecke 1721 (Allertalbahn von Celle - Wannebergen (- Verden(Aller)) wieder aufgebaut werden. In südlicher Verlängerung soll dieses Gleis niveaufrei über die in westliche Richtung abzweigende Strecke 1710 geführt werden.

Der bei km 41,346 befindliche BÜ Dasselbrucher Straße K61 wurde im Rahmen der bautechnischen Planung nicht berücksichtigt, für das Überwerfungsgleis K61 wird eine Eisenbahnüberführung geplant.

Die Verbindung der Überwerfungstrasse (Gleis 28) mit dem Gleis 27 (Gegenrichtungsgleis der Strecke 1710) realisieren zwei Weichen der Grundform 760 für 80 km/h.

Die Rückbindung der Überwerfungstrasse im Bf Celle an das durchgehende bahnlinke Gleis 27 erfolgt bei km 42,8. Für die Einbindung des mit etwa 4,50 m parallel verlaufenden Gleises 28 mit \(v_e = 120 \text{ km/h} \) wird eine EW 60-2500-1:27,85 fb geplant. Das Gleis 8 wird über den abzweigenden Strang einer ABW 60-500-1:12 an die neue Trasse angebunden.

Ausbautraverse Uelzen – Abzw Ebstorf West

Uelzen

Die Anbindung der nordwestlich verlaufenden Strecke 1960 an den Bahnhof Uelzen erfolgt derzeit zweigleisig bis km 2,1. Durch eine Bogenfolge mit Minimalradien von 442 m sowie eine überhöhte Weichenverbindung im Bogen und eine weitere Bogenweiche zur Strecke 1720 ist eine Geschwindigkeitsanhebung über 80 km/h im Bahnhofsbeizicht nicht möglich.

Die Trassierungsanpassung zur Erhöhung der Maximalgeschwindigkeit beginnt hinter der Bogenweiche bei km 0,680. Durch Vergrößerung der Höhenerhöhung bei gleichbleibender Gleislage kann die Geschwindigkeit auf 120 km/h und ab km 1,05 auf 160 km/h erhöht werden.

Die Weiche 850 (EW 54-1200-1:18,5) bei km 2,18, welche derzeit den Übergang zur Eingleisigkeit mit 100 km/h herstellt, wird zurückgebaut. Im weiteren Verlauf wird das neue zweite Gleis entspre-
chend der historischen Lage bahnlinks mit 4,00 m Abstand gemäß dem aktuellen Regelwerk angelegt.

Die Trassierung orientiert sich stark am bestehenden Gleis, wobei einige Optimierungen beispielsweise bei Korbbogenfolgen vorgenommen wurden. Insgesamt ist festzuhalten, dass eine Geschwindigkeitserhöhung auf 160 km/h durchgehend möglich ist, ohne die vorhandene Gleislage erheblich zu verändern.

Bis km 3,000 sind im Bereich der Geschwindigkeitsanhebung Dammertüchtigungsmaßnahmen durchzuführen. Für den Kostenansatz wird aufbauend auf die geotechnischen Untersuchungen im Rahmen der EP zur ABS 52 (eingleisige Erhöhung für 120 km/h) von 10 teilvermörtelten je 6 m tiefen Rüttelstopfsäulen à 3 m Dammänge sowie beidseitiger Böschungsvernagelung mit je 3 verpressten, durchschnittlich 6 m langen Böschungsnägeln à 1,5 m Dammänge ausgegangen. Im Abschnitt km 2,2 bis km 2,9 ist bahnlinks eine Dammverbreiterung mit durchschnittlich 2 m Grund- erwerb notwendig. Im Bereich von Einschnitt und Geländegleichlage zwischen km 3,1 und km 12,3 wird beidseitig Tiefenentwässerung geplant. Die Einschnittsbereiche km 5,7 bis km 7,4 sowie km 8,9 bis km 10,2 müssen aufgeweitet werden, im zweiten Abschnitt wird von etwa 1 m Grun- derwerb ausgegangen.

Der BÜ Kämpenweg im Uelzener Ortsteil Westerweyhe bei km 3,505 kann erhalten bleiben und zweigleisig ausgebaut werden, ebenso wie die folgenden BÜ Am Stadtwald, km 4,070, Altes Dorf, km 4,685 und Hainberg, km 5,614. Eine BÜ-Beseitigung mittels einer höhenfreien Kreuzung erscheint im Bereich Westerweyhe verziehtbar, da die Hauptverkehrsbeziehungen radial nach Uelzen über die B4 nordöstlich der Bahnstrecke 1960 und die L250 südwestlich der Bahn verlaufen.

Die Gleisanschlüsse im ehemaligen Bahnhof Westerweyhe sind zurückgebaut, ein Haltepunkt existiert hier nicht.

Für den Ersatzneubau der SÜ der Waldwege bei km 6,340 und km 9,790 ist jeweils eine Gradiente anpassung der Straße wegen der zu berücksichtigenden Oberleitung vorgesehen. Ggf. kann durch eine Gradienteanhebung der Gleise die gesamte Einschnittsaufweitung minimiert werden. Dies sollte auch im Hinblick auf die Reduzierung der Eingriffe in die Natur näher untersucht werden, da die Strecke hier zwischen km 6,610 und km 8,880 ein Landschaftsschutzgebiet durchquert. Ein FFH-Gebiet erstreckt sich außerhalb der DB-Grenze beiderseits der Strecke.

Im Linksbogen bei km 7,0 erfolgt durch die Geschwindigkeitsanhebung eine größere Gleislagever- schiebung von 75 cm am Ende des ersten Übergangs bogens.

Ebstorf

Der Bahnhof Ebstorf verfügt derzeit über einen Hausbahnsteig am veräußerten Empfangsgebäude sowie einen Inselbahnsteig mit Reisendenübergang am Überholungsgleis. Es wird davon ausgegangen, dass ein separates Überholungsgleis nicht erforderlich ist. Aufgrund der höheren Ge-
schwindigkeit und Zugfolge wird der Neubau eines Außenbahnsteiges am zweiten Streckengleis und einer Personenunterführung geplant. Für den nördlichen Aufgang der PU ist etwa 500 m² Grunderwerb notwendig.

Westlich der Ortslage Ebstorf im Abschnitt km 12,330 bis km 12,620 schneidet die Strecke ein Landschaftsschutzgebiet im Zuge des Wasserlaufes Schwienau.

Maßnahmen zur Dammertüchtigung wie oben beschrieben kommen in den Abschnitten km 12,300 bis km 13,000 und km 15,900 bis km 16,400 zum Einsatz.

Der BÜ Hanstedt 1, km 16,694, fällt durch die höhenfreie Anbindung an die NBS Ashausen - Unterlüß in einen dreigleisigen Abschnitt und sollte daher aufgehoben werden.

NBS Südumfahrung Uelzen

Die nachfolgende Beschreibung der NBS Südumfahrung Uelzen folgt der Kilometrierung der anknüpfenden Strecken vom Abzweig Veerßen südlich Uelzen bis zum Bereich Ebstorf an der Strecke 1960 mit Anbindung an die NBS Ashausen - Unterlüß.

Die etwa 16,5 km lange NBS beginnt im dargestellten Entwurf bei km 100,5 der perspektivisch zweigleisig ausgebauten Strecke 6899 bei Veerßen südlich Uelzen. Nach einer neuen Überleitstelle in Form eines Weichentrapezes zweigen die NBS-Gleise mit Weichen für $v=100$ km/h aus der Bestandsstrecke ab. Der Abzweig liegt südlich der zweigleisigen Einbindung der Strecke 6899 in den Bf Uelzen, so dass an den in diesem Jahr neu errichteten Anlagen keine Änderungen erforderlich werden.

Das Richtungsgleis der NBS überquert die Bestandsstrecke niveaufrei. Im Falle der weiterführenden Planungen ist zu untersuchen, ob die NBS als gerade Verlängerung der Strecke 6899 gestaltet wird, und die Weiterführung der Strecke 6899 in Richtung Uelzen über den abzweigenden Strang mit niveaugleicher Ausfädelung erfolgen kann.

Im weiteren Verlauf werden die Celler Straße, die Strecke 1720 Richtung Celle und die B 71 überquert. Sie tangiert den Uelzener Stadtwald im südwestlichen Bereich und passiert nördlich des Flugplatzes die Dörfer Schwienau und Wittenwater bevor sie westlich Ebstorf in der Höhe von Allenbostel in die Bestandsstrecke 1960 einbindet.

Das Richtungsgleis bindet über den abzweigenden Strang einer Weiche in die Bestandsstrecke ein, das Gegenrichtungsgleis der NBS bindet in der Lage des ehemaligen Gegengleises der Strecke 1960 (bei km 14,5) ein. Bei km 16,6 beginnt in nördliche Richtung der Abzweig der Verbindungskurven zum Ubf Wriedel der NBS Ashausen - Unterlüß.
In den weiteren Planungen ist die Trassierung der Anbindung entsprechend der betrieblichen Erfordernisse ggf. zu optimieren. Die Spurplangestaltung sieht momentan vor, dass die Südumfahrung Uelzen über die Strecke 1960 niveaufrei und seitengerichtigt in die Überholgleise der NBS Ashausen - Unterlüß einbindet.

Durch Überleitverbindungen für v=60 km/h am Abzweig der NBS Südumfahrung und der Verbindungskurven zum Ubf Wriedel wird in der Strecke 1960 ein zusätzlicher zweigleisiger Begegnungsabschnitt geschaffen. Es wird jedoch davon ausgegangen, dass der Regionalverkehr den zweigleisig ausgebauten Abschnitt in beiden Richtungen auf dem nördlichen Gleis befährt.

Die Strecke kreuzt einen Hügelkamm mit einem Höhenunterschied von ca. 35 m. Besonders hervorzuheben ist der Anstieg durch den Stadtwald Uelzen von km 3,0 bis 6,0 sowie der „Abstieg“ Richtung Ebstorf zwischen km 10,0 und 12,0. Hier werden in der Gradiente größere Längsneigungen bis zu 12,5 ‰ zu erwarten sein.

9.1.2 Ingenieurbauwerke

NBS Unterlüß – Ashausen

Die Trasse der NBS Ashausen - Unterlüß quert zwischen Unterlüß und Ashausen zahlreiche Verkehrswege, für deren Überwindung diverse Eisenbahn- und Straßenüberführungen sowie Kreuzungsbauwerke erforderlich werden.

Im Bereich einer mit dem Geländeniveau gleich verlaufenden Trassengradiente wurden aufgrund geringerer lichter Höhen für Kraftfahrzeuge gegenüber dem Lichtraum der Bahn und infolge maximaler Neigungen der Straßengradienten gegenüber der Bahn werden überwiegend Eisenbahnüberführungen vorgesehen.

In den Bereichen der „Luhe“ verläuft die Trasse der NBS Ashausen - Unterlüß durch sich Schutz- und Überschwemmungsgebiete. Für den betreffenden Abschnitt (ca. zwischen dem km 56,550 und km 57,800) wird für die beiden Gleise der NBS Ashausen - Unterlüß von einem aufgeständerten Fahrrweg ausgegangen. Es wurde von ca. einem Drittel der Gesamtänge ausgegangen und eine Länge von 1250 m angesetzt. Die in diesem Abschnitt erforderlichen Bauwerke zur Querung der Luhe oder zur Überwindung von Wirtschaftswegen werden zusätzlich berücksichtigt.

der durchschnittenen land- und forstwirtschaftlichen Flächen zu gewährleisten, werden Straßen- oder Eisenbahnüberführungen berücksichtigt.

Kapazitätssteigernde Maßnahmen der Strecke 1720 im Bf Celle

Ausbaustrecke Uelzen – Abzw Ebstorf West

Im Zuge des Ausbaus der Bestandstrecke 1960 zwischen Uelzen und der Abzweigung der NBS Ashausen - Unterlüß werden Neubaumaßnahmen für mehrere Ingenieurbauwerke erforderlich. Die Kreuzungsbauwerke sowie der Abzweig der NBS sind der NBS Ashausen - Unterlüß zugeordnet.

Im Rahmen des Ausbaus der Strecke 1960 wird ein zweites Gleis unter Nutzung der ehemaligen Bahnbereiche (Dämme, Einschnitte, Bauwerke) aufgebaut. Die Strecke wird elektrifiziert. Infolge der Last- und Geschwindigkeitsanhebung ($v_e = 160 \text{km/h}; 25 \text{t RSL}$) wird entsprechend den Einschätzungen des Fachverantwortlichen für Brückenbelastbarkeit im betreffenden Streckenabschnitt für das Bauwerk:

- km 2,206 Eisenbahnüberführung Fischerhofstraße; Baujahr 1950; Grund: geringe Belastbarkeit, schlechter Bauwerkszustand

ein Ersatzneubau erforderlich.

Für den überwiegenden Teil der im betrachteten Streckenabschnitt vorhandenen Eisenbahnüberführungen wird eingeschätzt, dass unter Berücksichtigung des Gleisabstandes von 4,0 m und des beidseitigen Sicherheitsraumes von 0,8 m eine ausreichende Breite für den 2-gleisigen Ausbau nicht gewährleistet werden kann. Eine Erneuerung der Randkappen einschließlich der Absturz sicherung zur Herstellung regelkonformer Randwege sowie lokale Instandsetzungsarbeiten wurden im Rahmen der Machbarkeitsstudie unter dem Aspekt des vorhandenen Bauwerkalters > 100 Jahre nicht weiterverfolgt. Für folgende Bauwerke:

- Eisenbahnüberführung EÜ Kuhteich, km 0,983
- Eisenbahnüberführung EÜ Schwienau, km 12,422

wird von einem Ersatzneubau ausgegangen.

Weiterhin befinden sich im auszubauenden Streckenabschnitt zwischen Uelzen und der Abzweigung der NBS Ashausen - Unterlüß Straßenüberführungen, deren lichte Höhe (Durchfahrtshöhe) aus der vorliegenden Bauwerksliste nicht ersichtlich ist. Eine Beurteilung hinsichtlich der Elektrifizierung des Streckenabschnittes konnte somit nicht durchgeführt werden, so dass für die SÜ’s der Wald- und Feldwege bei km 6,340 und km 9,790 Ersatzneubauten sowie Gradientenanpassungen geplant werden.

Für die Durchlässe wird eine weitere Nutzung der Bestandsbauwerke angenommen und pauschal Instandsetzungsarbeiten angesetzt. Bauwerksgutachten, Aussagen zur Tragsicherheit sowie Einschätzungen bezüglich der Geschwindigkeitsanhebung auf bis zu 160 km/h unter Berücksichtigung der 25 t Achslast liegen nicht vor.

9.1.3 Anlagen der Leit- und Sicherungstechnik

NBS Ashauen - Unterlüß

Die Variante NBS Ashauen - Unterlüß beinhaltet den kompletten Neubau der Strecke und der Signalanlagen.

Einschließlich der einmündenden Bahnhöfe (Unterlüß und Ashauen), die in Bezug auf LST vollständig umgebaut werden müssen, sind sieben neue ESTW- Module erforderlich.

In den Überholungsbahnhöfen Wriedel und Wetzen wird eine Nutzgleislänge von 750 m ohne Fahrstraßenausschlüsse realisiert.

Bahnübergänge sind bei diesem Streckenstandard nicht zulässig.

Ausbaustrecke Uelzen - Abzw Ebstorf West

Bf Uelzen

Vor dem Bf Uelzen wird die Üst Fischerhof aufgelassen. Die Strecke wird Zweigleisig ausgebaut. Das Blocksignal 802 bleibt bestehen, am neuen Gegengleis ist ein Zweites Blocksignal aufzustellen und ebenfalls im Stw Üf zu integrieren. Alle weiteren Blocksignale werden an das neue ESTW angeschlossen.

Bf Ebstorf

Der zweigleisige Bf Ebstorf wird aufgelassen, es bleibt nur noch ein Haltepunkt.

Für die Kosten wurde der Rückbau der Signalanlagen geschätzt.
Abzw Str. 1960 – NBS Ashausen - Unterlüß

Wegen der Begrenzten Stellentfernung von Weichen und Signalen ist für diesen Streckenabschnitt ein extra ESTW-Modul erforderlich. Als Blockabstand wurden entsprechend dem vorgesehenen Streckenstandard vier km geplant.

Vorhandene Bahnübergänge sind dem zweigleisigen Ausbau und der neuen Streckengeschwindigkeit anzupassen.

NBS Südufmahrung Uelzen

Für die Südufmahrung ist der Streckenstandard G 120 mit 160 km/h anzuwenden. Diese Variante beinhaltet die südliche Umfahrung des Bf Uelzen aus der Strecke 1960 mit dem Anschluss an die Strecke 6899 (Stendal - Uelzen). Beim Anschluss an die Strecke Stendal - Uelzen wurde vorausgesetzt, dass der zweigleisige Ausbau erfolgt ist.

Es sind drei neue Abzweigstellen (Str. 1960 - NBS) und (Str. 1960 – Südufmahrung Uelzen) sowie (Südufmahrung Uelzen – Str. 6899) zu errichten.

Es wurden Blockabchnittslängen von 4 km und Gleiswechselbetrieb vorgesehen. Für diese Variante sind zwei ESTW-Module erforderlich. Die Bedienung erfolgt aus der BZ Hannover, die dafür erweitert werden muss.

Als Signalsystem wurden Ks-Signale mit PZB vorgesehen, zur Gleisfreimeldung Achszähler.

Kabellieferbaukosten wurden berücksichtigt.

9.1.4 Oberleitungsanlage

NBS Unterlüß – Ashausen

Bauarten der Oberleitung

Die Oberleitung wird gemäß Ril 997, Ebs-Zeichnungswerk und TM 2011-154 l.NVT 4 (Re 250 und Re200i) errichtet.

Für die NBS wird einschließlich der durchgehenden Hauptgleise der Überholungsbahnhöfe Wriedel und Wetzen auf Grund der geplanten Streckengeschwindigkeit eine Oberleitungsanlage der Regelbauart Re 250 geplant.

Die genannten Bauarten erlauben den Einsatz des DB-Standard-Stromabnehmers (Stromabnehmer TYP 1.950) sowie der interoperablen Eurowippe (Stromabnehmer TYP 1.600).

Die gesamten Oberleitungsanlagen werden für einen Temperaturbereich von 100 K ausgelegt. Bei der Planung der Oberleitung wird die in Ebs 02.05.32 genannte Bemessungswindgeschwindigkeit von 26 m/s zu Grunde gelegt.

Wegen der hohen Leistungsentnahme der Hochgeschwindigkeitszüge wird gemäß Forderungen der DB Energie die Strecke mit beidseitigen Verstärkungsleitungen (15 kV, 16,7 Hz) ausgerüstet.

Maste und Fundamente

Die neu zu errichtende Oberleitungsanlage wird in konsequenter Einzelmastbauweise realisiert. Die Oberleitungsmaste werden gemäß Ril 997.01 vorzugsweise in Betonbauweise ausgeführt.

Die Fundamente der Oberleitung werden vorzugsweise als Rammgründungen ausgeführt.
OSE-Kabelanlagen
 Für die Steuerung der Masttrennschalter werden insbesondere im Bereich der Bahnhöfe OSE-Kabelanlagen neu errichtet und an die seitens DB Energie geplanten Fernwirk-Unterstationen angeschlossen.

Schnittstellen für die OSE-Außenkabelanlagen sind die Hauptklemmleisten (HX 1) der Fernwirkunterstationen für die Steuerung der Oberleitungsschalter und die Klemmleisten der Masttrennschalterantriebe. Die Planung und Realisierung der OSE- Fernwirkunterstationen und der HX 1-Klemmleisten erfolgen in Zuständigkeit der DB Energie.

Fernwirkunterstation OSE
 Für die Ansteuerung der Masttrennschalter werden neue Fernwirk-Unterstationen OSE vorzugsweise in den neu geplanten ESTW-Modulen installiert und in die neu zu erstellende Fernwirklinie eingebunden.

Erdungsanlagen im Oberleitungsbereich
 Die Erdungs- und Rückleitungsanlagen werden im gesamten Bauvorhaben gemäß Ril 997.02 ff. sowie Technischer Mitteilung TM 2008 – 064 l.NVT 4 E unter Verwendung von flexiblen Stahlseil nach Ebs 20.01.02 mit Querschnitt 1x95 mm² ausgeführt (Diebstahlschutz).

Bei der Planung und Errichtung von Erdungsanlagen im Bereich der Oberleitung wird ein Kurzschlussstrom gemäß den Vorgaben von DB Energie zu Grunde gelegt.

Bahnhöfe Unterlüß und Ashausen
 Da die Einbindung der NBS in die Bahnhöfe Unterlüß und Ashausen oberbautechnisch zu erheblichen Spurplanänderungen führt, wird für beide Bahnhöfe überwiegend ein Neubau der Oberleitungsanlage unter Berücksichtigung der Streckengeschwindigkeiten (Re100i, Re200i sowie abschnittsweise Re250) und einer Befahrung mit Eurowippe geplant.

Kapazitätssteigernde Maßnahmen der Strecke 1720 im Bf Celle
 Mit der Errichtung eines östlichen Umfahrungsgleises im Bf Celle im Bereich km 40,3 bis 43,5 ist die Nachrüstung einer Oberleitungsanlage vom Typ Re200i mit Berücksichtigung der Eurowippe geplant. Außerdem ist die durch den erheblichen Umbau der Anlagen in den Nachbarbereichen und insbesondere den ca. 14 anzupassenden Weichenbespannungen ein über den eigentlichen Gleisneubau hinausgehender Umbau der Oberleitung im Bf Celle erforderlich. Eine komplette Auflösung der vorhandenen Querfelder und ein Ersatz durch Einzelmastbauweise ist bei der Ausbauvariante Bf Celle auf Grund der östlichen Umfahrung des eigentlichen Bahnhofs im Unterschied zur Variante ABS 1720 (Ausbau der Strecke 1720) nicht erforderlich.

Die Elektrifizierung des Umfahrungsgleises wird in konsequenter Einzelmastbauweise geplant.

Die Oberleitungsmaste werden gemäß Ril 997.01 vorzugsweise in Betonbauweise ausgeführt. In beengten Bereich der ABS wird die Errichtung von Peinermasten befürwortet.

Im Bauvorhaben werden keine Rückanker für neue Oberleitungsmaste geplant. Die Dimensionierung der Maste wird entsprechend Belastung ohne Rückanker angesetzt.
Die Oberleitungsmaste werden im Bereich des Bauvorhabens Ebs-konform und gemäß Ril 997.01 neu nummeriert und vor Ort beschildert.

Gemäß Ril 997.01 werden vorzugsweise Rammgründungen ausgeführt.

Die bestehende OSE-Kabelanlage und Fernwirk-Unterstation des Bf Celle werden für die Anschaltung der zusätzlichen Masttrennschalter erweitert.

Ausbaustrecke 1960 Uelzen - Abzw Ebstorf West

Allgemein
Gegenstand der Variante NBS Ashausen – Unterlüß der vorliegenden Machbarkeitsstudie ist auch der komplette Neubau der Oberleitungsanlage (Erstelektrifizierung der Strecke 1960, 15 kV; 16,7 Hz) im Bereich zwischen Bf Uelzen und der geplanten NBS Ashausen - Unterlüß.

Die neuen Oberleitungsanlagen werden für eine Befahrbarkeit mit DB- und Eurowippe geplant.

Im Bahnhof Ebstorf werden sämtliche Gleise für eine Elektrifizierung vorgesehen.

Die Oberleitungsanlage des Bf Uelzen ist bereits für eine künftige Elektrifizierung der Strecke 1960 Richtung Langwedel vorbereitet worden, so dass hier lediglich geringe Anpassungen der bestehenden Oberleitungsanlage erforderlich werden.

Bauarten der Oberleitung
Die Oberleitung wird gemäß Ril 997, Ebs-Zeichnungswerk und TM 2011-154 I.NVT 4 (Re200i und Re200i) errichtet.

Die genannten Bauarten erlauben den Einsatz des DB-Standard-Stromabnehmers (Stromabnehmer TYP 1.950) sowie der interoperablen Eurowippe (Stromabnehmer TYP 1.600).

Die gesamten Oberleitungsanlagen werden für einen Temperaturbereich von 100 K ausgelegt. Bei der Planung der Oberleitung wird die in Ebs 02.05.32 genannte Bemessungswindgeschwindigkeit von 26 m/s zu Grunde gelegt.

Seitens der DB Energie bestehen nach gegenwärtigem Stand der Ermittlungen keine Forderungen die Strecke mit Verstärkungsleitungen (15 kV, 16,7 Hz) auszurüsten.

Maste und Fundamente
Die neu zu errichtende Oberleitungsanlage wird in konsequenter Einzelmastbauweise realisiert.

Die Oberleitungsmaste werden gemäß Ril 997.01 vorzugsweise in Betonbauweise ausgeführt.

Die Fundamente der Oberleitung werden vorzugsweise als Rammgründungen ausgeführt.

OSE-Kabelanlagen
Für die Steuerung der Masttrennschalter werden insbesondere im Bereich des Bahnhofs Ebstorf OSE-Kabelanlagen neu errichtet und an die seitens DB Energie geplanten Fernwirk-Unterstationen angeschlossen.

Schnittstellen für die OSE-Außenkabelanlagen sind die Hauptklemmleisten (HX 1) der Fernwirkunterstationen für die Steuerung der Oberleitungsschalter und die Klemmleisten der Masttrennschal-
terantriebe. Die Planung und Realisierung der OSE- Fernwirkunterstationen und der HX 1-Klemmleisten erfolgen in Zuständigkeit der DB Energie.

Fernwirkunterstation OSE

Für die Ansteuerung der Masttrennschalter wird eine neue Fernwirk-Unterstation OSE vorzugsweise im neu geplanten ESTW-Modul Bf Ebstorf installiert und in die neu zu erstellende Fernwirklinie eingebunden.

Erdungsanlagen im Oberleitungsbereich

Die Erdungs- und Rückleitungsanlagen werden im gesamten Bauvorhaben gemäß Ril 997.02 ff. sowie Technischer Mitteilung TM 2008 – 064 l.NVT 4 E unter Verwendung von flexiblen Stahlseil nach Ebs 20.01.02 mit Querschnitt 1x95 mm² ausgeführt (Diebstahlschutz).

Bei der Planung und Errichtung von Erdungsanlagen im Bereich der Oberleitung wird ein Kurzschlussstrom gemäß den Vorgaben von DB Energie zu Grunde gelegt.

9.1.5 Elektrotechnische Anlagen für Licht- und Kraftstrom

NBS Unterlüß – Ashausen

Energieversorgung:

Die Energieversorgung der neuen ESTW-Module wird über Trenntransformatoren zur Netztrennung erfolgen. Um die unterbrechungsfreie Energieversorgung der neuen ESTW-Module zu gewährleisten, werden diese mit Netzersatzanlagen, die aus dem Netz der Oberleitung eingespeist werden, ausgerüstet.

Elektrische Weichenheizungen:

Bahnsteigbeleuchtungsanlagen und Ausrüstungen:

In Bahnhof Unterlüß werden 2 Bahnsteige und in Bahnhof Ashausen wird ein Bahnsteig zurückgebaut. Stattdessen werden neue Bahnsteige errichtet, die mit den neuen Beleuchtungsanlagen ausgerüstet werden. Die bestehenden und neu zu errichtenden Ausrüstungen werden an die neuen Verteilungen (Standardbauweise) der DB Station&Service angeschlossen.
Ausbaustrecke Uelzen - Abzw Ebstorf West

Energieversorgung:

Elektrische Weichenheizanlagen:

Bahnsteigbeleuchtungsanlagen und Ausrüstungen:

Im Bahnhof Uelzen werden keine Änderungen an den vorhandenen Beleuchtungsanlagen der Bahnsteige vorgenommen. Im Zuge des Ausbaus und der Erneuerung der Gleisanlage im Bereich der Verkehrsstation Ebstorf wird ein neuer Außenbahnsteig mit einer Personenunterführung gebaut. Diese Anlagen sowie der vorhandene Hausbahnsteig werden mit den neuen Beleuchtungsanlagen ausgerüstet. Die Beleuchtungsanlagen und die vorhandenen bzw. neu zu errichtenden Ausrüstungen werden an die neue Verteilung (Standardbauweise) der DB Station&Service angeschlossen.

Gleisfeldbeleuchtungsanlagen:

Entlang dieses Streckenabschnittes werden keine neuen Gleisfeldbeleuchtungsanlagen errichtet.
9.1.6 Naturschutz

Qualitative Risikobewertungen betroffener Schutzgebiete

In der nachfolgenden Tabelle 30 sind die im geplanten Trassenbereich der Variante NBS Ashausen – Unterlüß identifizierten Schutzgebiete gelistet.

<table>
<thead>
<tr>
<th>Schutzgebietstyp</th>
<th>NBS Unterlüß – Ashausen [km]</th>
<th>ABS 1960 Uelzen (a) – Abzw NBS Unterlüß – Ashausen [km]</th>
<th>Summe [km]</th>
</tr>
</thead>
<tbody>
<tr>
<td>FFH</td>
<td>1,430</td>
<td>2,820</td>
<td>4,250</td>
</tr>
<tr>
<td>HQSG</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LSG</td>
<td>20,910</td>
<td>9,760</td>
<td>30,670</td>
</tr>
<tr>
<td>NSG</td>
<td>2,730</td>
<td>1,330</td>
<td>4,060</td>
</tr>
<tr>
<td>ÜBSchG</td>
<td>1,710</td>
<td>0</td>
<td>1,710</td>
</tr>
<tr>
<td>VSG</td>
<td>0,930</td>
<td>0</td>
<td>0,930</td>
</tr>
<tr>
<td>WSG</td>
<td>12,390</td>
<td>1,530</td>
<td>13,920</td>
</tr>
<tr>
<td>Summe</td>
<td>40,100</td>
<td>15,440</td>
<td>55,540</td>
</tr>
</tbody>
</table>

Tabelle 30 - Identifizierte Schutzgebiete Variante NBS Ashausen – Unterlüß
NBS Unterlüß – Ashausen – Kostenschätzung für naturschutzfachliche Kompensationsmaßnahmen

Die Kostenschätzungen für die umweltplanerischen Instrumente und deren Herleitung sind unter Worst-Case-Bedingungen in der Tabelle 31 dargestellt:

<table>
<thead>
<tr>
<th>#</th>
<th>Inhalt / Berechnung</th>
<th>Kalkulatorische Fläche [ha]</th>
<th>Kosten [tEuro]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Umweltverträglichkeitsstudie, Untersuchungsfläche errechnet aus einer Korridorbreite von jeweils 1.000 m rechts und links der Trasse</td>
<td>15.500</td>
<td>490</td>
</tr>
<tr>
<td>2</td>
<td>Eingriffsregelung, Untersuchungsfläche errechnet aus einer Korridorbreite von jeweils 500 m rechts und links der Trasse</td>
<td>7.500</td>
<td>74</td>
</tr>
<tr>
<td>3</td>
<td>Artenschutz-Fachbeitrag, Untersuchungsfläche errechnet aus einer Korridorbreite von 500 m rechts und links der Trasse mit folgenden Flächenanteilen: 20% der FFH-Gebietsfläche 18, 50% der VSG-Gebietsfläche 70, 100% der NSG-Gebietsfläche 186, 20% der LSG-Gebietsfläche 353, Kosten Kartierleistungen: 627, Kosten Fachbeitrag: 50, Gesamtkosten Fachbeitrag: 677</td>
<td>18</td>
<td>627</td>
</tr>
<tr>
<td></td>
<td>Verträglichkeit nach § 34 BNatSchG, Untersuchungsfläche errechnet aus einer Korridorbreite von jeweils 1.000 m rechts und links der Trasse; evtl. Überlagerungen von FFH- und Vogelschutzgebieten wurden in Abzug gebracht</td>
<td>640</td>
<td>115</td>
</tr>
</tbody>
</table>

Gesamtsumme Planungsleistungen 1.356

Tabelle 31 – Kostenabschätzung für UVS und naturschutzfachliche Planungsleistungen Variante NBS Ashausen - Unterlüß
Die Kosten für die naturschutzfachlichen Kompensationsmaßnahmen sind unter Worst-Case-Bedingungen in der nachfolgenden Tabelle 32 dargestellt.

<table>
<thead>
<tr>
<th>Inhalt / Berechnung</th>
<th>Streckenlänge, gerundet [km]</th>
<th>Kosten [t€uro]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Szenario 1:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kosten für Ausgleichsmaßnahmen (errechnet über Streckenlänge und angenommene Eingriffsbreite von 16 m bei Kosten von 32,-- €uro pro m2)</td>
<td>64,4</td>
<td>33.000</td>
</tr>
<tr>
<td>Resultierende Gesamtkosten für Naturschutzmaßnahmen (errechnet aus den Kosten für Ausgleichsmaßnahmen, die nur 26 % der Gesamtkosten ausmachen)</td>
<td></td>
<td>126.800</td>
</tr>
<tr>
<td>Gesamtkosten:</td>
<td></td>
<td>126.800</td>
</tr>
<tr>
<td>Szenario 2:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gesamtkosten für Naturschutzmaßnahmen</td>
<td></td>
<td>66.700</td>
</tr>
</tbody>
</table>

Tabelle 32 – Kostenabschätzung für naturschutzfachliche Kompensationsmaßnahmen
Variante NBS Ashausen - Unterlüß
ABS 1960 Uelzen (a) - Abzw Ebstorf West – Kostenschätzung für naturschutzfachliche Kompensationsmaßnahmen

Die Kostenschätzungen für die umweltplanerischen Instrumente und deren Herleitung sind unter Worst-Case-Bedingungen in der Tabelle 33 dargestellt:

<table>
<thead>
<tr>
<th>#</th>
<th>Inhalt / Berechnung</th>
<th>Kalkulatorische Fläche [ha]</th>
<th>Kosten [t€uro]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Umweltverträglichkeitsstudie
Untersuchungsfläche errechnet aus einer Korridorbreite von jeweils 1.000 m rechts und links der Trasse</td>
<td>4.000</td>
<td>160</td>
</tr>
<tr>
<td>2</td>
<td>Eingriffsregelung
Untersuchungsfläche errechnet aus einer Korridorbreite von jeweils 500 m rechts und links der Trasse</td>
<td>1.900</td>
<td>29</td>
</tr>
<tr>
<td>3</td>
<td>Artenschutz-Fachbeitrag
Untersuchungsfläche errechnet aus einer Korridorbreite von 500 m rechts und links der Trasse mit folgenden Flächenanteilen
20% der FFH-Gebietsfläche
50% der VSG-Gebietsfläche
100% der NSG-Gebietsfläche
20% der LSG-Gebietsfläche
Kosten Kartierleistungen:
Kosten Fachbeitrag:
Gesamtkosten Fachbeitrag:</td>
<td>32
0
131
86
248
20
268</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Verträglichkeit nach § 34 BNatSchG
Untersuchungsfläche errechnet aus einer Korridorbreite von jeweils 1.000 m rechts und links der Trasse; evtl. Überlagerungen von FFH- und Vogelschutzgebieten wurden in Abzug gebracht</td>
<td>159</td>
<td>29</td>
</tr>
</tbody>
</table>

Gesamtsumme Planungsleistungen

486

Tabelle 33 – Kostenabschätzung für UVS und naturschutzfachliche Planungsleistungen

Variante NBS Ashausen - Unterlüß, ABS 1960 Uelzen (a) - Abzw Ebstorf West
Die Kosten für die naturschutzfachlichen Kompensationsmaßnahmen sind unter Worst-Case-Bedingungen in der nachfolgenden Tabelle 34 dargestellt.

<table>
<thead>
<tr>
<th>Inhalt / Berechnung</th>
<th>Streckenlänge, gerundet [km]</th>
<th>Kosten [t€uro]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Szenario 1:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kosten für Ausgleichsmaßnahmen (errechnet über Stre-</td>
<td>18,6</td>
<td>9.500</td>
</tr>
<tr>
<td>ckenlänge und angenommene Eingriffsbreite von 16 m bei</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kosten von 32,-- €uro pro m²)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resultierende Gesamtkosten für Naturschutzmaßnahmen (errechnet aus den Kosten für Ausgleichsmaßnahmen, die nur 26 % der Gesamtkosten ausmachen)</td>
<td></td>
<td>36.600</td>
</tr>
<tr>
<td>Gesamtkosten:</td>
<td></td>
<td>36.600</td>
</tr>
<tr>
<td>Szenario 2:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gesamtkosten für Naturschutzmaßnahmen</td>
<td>18,6</td>
<td>19.300</td>
</tr>
</tbody>
</table>

Tabelle 34 – Kostenabschätzung für naturschutzfachliche Kompensationsmaßnahmen
Variante NBS Ashausen – Unterlüß, ABS 1960 Uelzen (a) – Abzw Ebstorf West

9.1.7 Schallschutztechnische Untersuchung

Betroffenheiten

Unter Berücksichtigung von 10 %Scheibenbremsanteil bei Güterzügen und ohne Schienenbonus ergeben sich abschnittsbezogen folgende Umfänge an betroffenen Wohneinheiten (WE):

- NBS Ashausen - Unterlüß 4.250 WE
- ABS 1960 Uelzen (a) - Abzw Ebstorf West 3.774 WE

In Summe sind bei der Variante NBS Ashausen – Unterlüß ca. 8.000 WE durch Schallimmissionen betroffen.

Schallschutzmaßnahmen

Unter Berücksichtigung von 10 %Scheibenbremsanteil bei Güterzügen und ohne Schienenbonus werden an den betrachteten Strecken folgende Lärmschutzwände erforderlich:

- NBS Unterlüß – Ashausen 41,950 km
- ABS 1960 Uelzen (a) - Abzw Ebstorf West 12,800 km

In Summe ergeben sich bei der Variante NBS Ashausen – Unterlüß Lärmschutzwände auf einer Länge von ca. 55 km.
9.2 Beschreibung und Ergebnisse Variante NBS Ashausen – Suderburg

9.2.1 Verkehrsanlagen

NBS Suderburg – Ashausen

Südlicher Abzweig NBS im Bf Suderburg

Der südliche Beginn der NBS liegt im Bf Suderburg im nördlichen Teil des Abschnitts der Strecke 1720 zwischen Celle und Uelzen. Der Abzweig aus der Bestandsstrecke ist zur Minimierung der Streckenlänge der NBS möglichst nahe an dem Bf Celle angeordnet. Die NBS zweigt – bezogen auf die Bestandsstrecke – in bahnlinker Richtung ab.

Die niveaufreie Kreuzung der NBS mit dem Gegenrichtungsgleis der Strecke 1720 wird dadurch realisiert, dass das nach Nordwesten zu verschwenkende Bestandsstreckengleis auf einem Dammbauwerk die geländegleich verlaufende NBS überquert.

Die Erweiterung des Bahnkörpers in Richtung Nordwesten erfordert die Verschiebung der Ladestraße, die Erschließung der angrenzenden Grundstücke ist aus südwestlicher Richtung sicherzustellen und anzupassen.

In der Vorplanung ist dieser Vorschlag im Vergleich zur Verbreiterung des Bahnkörpers in südöstliche Richtung und den damit verbundenen Eingriffen in den Baubestand (Empfangsgebäude) und in Grundstücke Dritter abzuwägen.

NBS Suderburg – Ashausen

Die NBS verlässt den Bf Suderburg gestreckt, so dass die Strecke bereits ab km 1,0 für v=300 km/h trassiert werden kann. Die Nähe zur Strecke 6899 südlich von Uelzen ermöglicht deren direkte Anbindung an die NBS in der Relation Hamburg - Stendal / „Ostkorridor“.

Bei km 12 wird die Strecke 1960 überquert. Der Kreuzungspunkt liegt zwischen dem Gelände der Bundespolizei am Hainberg sowie dem FFH-Gebiet Bobenwald.

Die NBS verlässt den Bf Suderburg gestreckt, so dass die Strecke bereits ab km 1,0 für v=300 km/h trassiert werden kann. Bei km 12 wird die Strecke 1960 überquert. Der Kreuzungspunkt liegt zwischen dem Gelände der Bundespolizei am Hainberg sowie dem FFH-Gebiet Bobenwald. Nördlich der Kreuzung wird der Übf Westerweyhe Nord mit seitengerichtigen Überholgleisen mit je 750 m Nutzlänge angeordnet.

Ab km 48 verläuft die Trasse deckungsgleich mit der NBS Unterlüß – Ashausen. Der Anknüpfpunkt entspricht etwa km 53 der NBS Unterlüß – Ashausen, die Beschreibung zum weiteren Verlauf, insbesondere zur Luhe-Querung, der Überquerung der A 39 sowie der Einbindung in die bestandsstrecke 1720 kann dem Abschnitt 9.1 entnommen werden.

Nördlicher Abzweig NBS im Bf Ashausen

Die Trassierung im Bf Ashausen entspricht der Variante NBS Unterlüß – Ashausen (siehe Abschnitt 09.1).

Kapazitätssteigernde Maßnahmen der Strecke 1720 im Bf Celle

Die im Bf Celle im Zusammenhang mit der NBS Suderburg – Ashausen geplanten Maßnahmen entsprechen im Umfang der Variante NBS Unterlüß – Ashausen (siehe Abschnitt 9.1).

9.2.2 Ingenieurbauwerke

NBS Suderburg – Ashausen

Grundsätzlich erfolgt die Art und Anordnung der erforderlichen Ingenieurbauwerke wie bereits unter dem Punkt 3.3.1 der NBS Unterlüß – Ashausen beschrieben. Ab dem Bahn-km 49,000 verlaufen die Trassen beider Neubauvarianten in gleicher Lage, so dass die Maßnahmen der NBS Unterlüß – Ashausen übernommen und die Kilometrierung entsprechend angepasst wird.

Aufgrund der ab dem Bahn-km 49,000 identisch verlaufenden Trasse durchquert die NBS Suderburg – Ashausen ebenfalls Schutz- und Überschwemmungsgebiete in den Bereichen der „Luhe“ bzw. des „Luhekanals“. Für den betreffenden Abschnitt (ca. zwischen dem km 51,800 und

Auf eine detaillierte Auflistung aller erforderlichen Bauwerke wird an dieser Stelle verzichtet – die Bauwerke sind in der Kostenschätzung aufgeführt.

Kapazitätssteigernde Maßnahmen der Strecke 1720 im Bf Celle

Die im Bf Celle im Zusammenhang mit der NBS Suderburg – Ashausen geplanten Maßnahmen entsprechen im Umfang der Variante NBS Unterlüß – Ashausen (siehe Abschnitt 00)

9.2.3 Anlagen der Leit- und Sicherungstechnik

NBS Suderburg – Ashausen

Die NBS Ashausen – Suderburg beinhaltet den kompletten Neubau der Strecke einschließlich der Signalanlagen.

Für alle o. g. Streckenabschnitten wurden firmenneutralen ESTW-Module nach der z. Z. maximal möglichen Stellentfernung, insbesondere für Weichen an den Überleitstellen und Bahnhöfen vorgesehen. Insgesamt sind vier neue ESTW-Module erforderlich. Die Bedienung der Module erfolgt aus der BZ Hannover, die dafür erweitert werden muss.

Als Signalsystem wurden Ks-Signale mit PZB vorgesehen, zur Gleisfreimeldung Achszähler.

9.2.4 Oberleitungsanlage

NBS Suderburg – Ashausen

Bauarten der Oberleitung

Für die NBS wird einschließlich der durchgehenden Hauptgleise der Überholungsbahnhöfe Wriedel und Wetzen auf Grund der geplanten Streckengeschwindigkeit eine Oberleitungsanlage der Regelbauart Re 250 geplant.

Die genannten Bauarten erlauben den Einsatz des DB-Standard-Stromabnehmers (Stromabnehmer TYP 1.950) sowie der interoperablen Eurowippe (Stromabnehmer TYP 1.600).

Die gesamten Oberleitungsanlagen werden für einen Temperaturbereich von 100 K ausgelegt. Bei der Planung der Oberleitung wird die in Ebs 02.05.32 genannte Bemessungswindgeschwindigkeit von 26 m/s zu Grunde gelegt.
Wegen der hohen Leistungsentnahme der Hochgeschwindigkeitszüge wird gemäß Forderungen der DB Energie die Strecke mit beidseitigen Verstärkungsleitungen (15 kV, 16,7 Hz) ausgerüstet.

Maste und Fundamente

Die neu zu errichtende Oberleitungsanlage wird in konsequenter Einzelmastbauweise realisiert. Die Oberleitungsmaste werden gemäß Ril 997.01 vorzugsweise in Betonbauweise ausgeführt. Die Fundamente der Oberleitung werden vorzugsweise als Rammgründungen ausgeführt.

OSE-Kabelanlagen

Für die Steuerung der Masttrennschalter werden insbesondere im Bereich der Bahnhöfe OSE-Kabelanlagen neu errichtet und an die seitens DB Energie geplanten Fernwirk-Unterstationen angeschlossen.

Schnittstellen für die OSE-Außenkabelanlagen sind die Hauptklemmleisten (HX 1) der Fernwirkunterstationen für die Steuerung der Oberleitungsschalter und die Klemmleisten der Masttrennschalterantriebe. Die Planung und Realisierung der OSE-Fernwirkunterstationen und der HX 1-Klemmleisten erfolgen in Zuständigkeit der DB Energie.

Fernwirkunterstation OSE

Für die Ansteuerung der Masttrennschalter werden neue Fernwirk-Unterstationen OSE vorzugsweise in den neu geplanten ESTW-Modulen installiert und in die neu zu erstellende Fernwirklinie eingebunden.

Erdungsanlagen im Oberleitungsbereich

Die Erdungs- und Rückleitungsanlagen werden im gesamten Bauvorhaben gemäß Ril 997.02 ff. sowie Technischer Mitteilung TM 2008 – 064 I.NVT 4 E unter Verwendung von flexiblen Stahlseil nach Ebs 20.01.02 mit Querschnitt 1x95 mm² ausgeführt (Diebstahlschutz).

Bei der Planung und Errichtung von Erdungsanlagen im Bereich der Oberleitung wird ein Kurzschlussstrom gemäß den Vorgaben von DB Energie zu Grunde gelegt.

Bahnhöfe Suderburg und Ashausen

Da die Einbindung der NBS in die Bahnhöfe Suderburg und Ashausen oberbautechnisch zu erheblichen Spurplanänderungen führt, wird für beide Bahnhöfe überwiegend ein Neubau der Oberleitungsanlage unter Berücksichtigung der Streckengeschwindigkeiten (Re100i, Re200i sowie abschnittweise Re250) und einer Befahrung mit Eurowippe geplant.

Die Oberleitungsmaste werden gemäß Ril 997.01 vorzugsweise in Betonbauweise ausgeführt.

Im Bauvorhaben werden keine Rückanker für neue Oberleitungsmaste geplant. Die Dimensionierung der Maste wird entsprechend Belastung ohne Rückanker angesetzt.

Die Oberleitungsmaste werden im Bereich des Bauvorhabens Ebs-konform und gemäß Ril 997.01 neu nummeriert und vor Ort beschildert.

Gemäß Ril 997.01 werden vorzugsweise Rammgründungen ausgeführt.

Die bestehende OSE-Kabelanlage und Fernwirk-Unterstation der Bahnhöfe Suderburg und Ashausen werden für die Anschaltung der zusätzlichen Masttrennschalter erweitert.
9.2.5 Elektrotechnische Anlagen für Licht- und Kraftstrom

NBS Suderburg – Ashausen

Energieversorgung:

Die Energieversorgung der neuen ESTW-Module wird über Trenntransformatoren zur Netztrennung erfolgen. Um die unterbrechungsfreie Energieversorgung der neuen ESTW-Module zu gewährleisten, werden diese mit Netzersatzanlagen, die aus dem Netz der Oberleitung eingespeist werden, ausgerüstet.

Elektrische Weichenheizanlagen:

Bahnsteigbeleuchtungsanlagen und Ausrüstungen:
In den Bahnhöfen Suderburg und Ashausen wird je ein Bahnsteig zurückgebaut. Stattdessen werden neue Bahnsteige errichtet, die mit den neuen Beleuchtungsanlagen ausgerüstet werden. Die bestehenden und neu zu errichtenden Ausrüstungen werden an die neuen Verteilungen (Standardbauweise) der DB Station&Service angeschlossen.

Gleisfeldbeleuchtungsanlagen:
Entlang der NBS werden keine neuen Gleisfeldbeleuchtungsanlagen errichtet.
9.2.6 Naturschutz

Qualitative Risikobewertungen betroffener Schutzgebiete

In der nachfolgenden Tabelle 35 sind die im geplanten Trassenbereich der Variante NBS Ashausen – Suderburg identifizierten Schutzgebiete gelistet.

<table>
<thead>
<tr>
<th>Schutzgebietstyp</th>
<th>Summe Variante NBS Ashausen - Suderburg [km]</th>
</tr>
</thead>
<tbody>
<tr>
<td>FFH</td>
<td>1,910</td>
</tr>
<tr>
<td>HQSG</td>
<td>0</td>
</tr>
<tr>
<td>LSG</td>
<td>12,730</td>
</tr>
<tr>
<td>NSG</td>
<td>0,640</td>
</tr>
<tr>
<td>ÜBSchG</td>
<td>1,630</td>
</tr>
<tr>
<td>VSG</td>
<td>0</td>
</tr>
<tr>
<td>WSG</td>
<td>12,170</td>
</tr>
<tr>
<td>Summe</td>
<td>29,080</td>
</tr>
</tbody>
</table>

Tabelle 35 - Identifizierte Schutzgebiete Variante NBS Ashausen – Suderburg

Variante NBS Ashausen – Suderburg - Kostenschätzung für naturschutzfachliche Kompensationsmaßnahmen

Die Kostenschätzungen für die umweltplanerischen Instrumente und deren Herleitung sind unter Worst-Case-Bedingungen in der Tabelle 36 dargestellt:

<table>
<thead>
<tr>
<th>#</th>
<th>Inhalt / Berechnung</th>
<th>Kalkulatorische Fläche [ha]</th>
<th>Kosten [t€uro]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Umweltverträglichkeitsstudie
 Untersuchungsfläche errechnet aus einer Korridorbreite von jeweils 1.000 m rechts und links der Trasse</td>
<td>12.600</td>
<td>417</td>
</tr>
<tr>
<td>2</td>
<td>Eingriffsregelung
 Untersuchungsfläche errechnet aus einer Korridorbreite von jeweils 500 m rechts und links der Trasse</td>
<td>6.250</td>
<td>67</td>
</tr>
</tbody>
</table>
Inhalt / Berechnung

Kalkulatorische Fläche [ha]

<table>
<thead>
<tr>
<th>#</th>
<th>Inhalt / Berechnung</th>
<th>Kalkulatorische Fläche [ha]</th>
<th>Kosten [t€uro]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Artenschutz-Fachbeitrag</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Untersuchungsfläche errechnet aus einer Korridorbreite von 500 m rechts und links der Trasse mit folgenden Flächenanteilen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20% der FFH-Gebietsfläche</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50% der VSG-Gebietsfläche</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100% der NSG-Gebietsfläche</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20% der LSG-Gebietsfläche</td>
<td>232</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kosten Kartierleistungen:</td>
<td></td>
<td>264</td>
</tr>
<tr>
<td></td>
<td>Kosten Fachbeitrag:</td>
<td></td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Gesamtkosten Fachbeitrag:</td>
<td></td>
<td>285</td>
</tr>
</tbody>
</table>

Verträglichkeit nach § 34 BNatSchG

Untersuchungsfläche errechnet aus einer Korridorbreite von jeweils 1.000 m rechts und links der Trasse; evtl. Überlagerungen von FFH- und Vogelschutzgebieten wurden in Abzug gebracht

<table>
<thead>
<tr>
<th>#</th>
<th>Inhalt / Berechnung</th>
<th>Kalkulatorische Fläche [ha]</th>
<th>Kosten [t€uro]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Verträglichkeit nach § 34 BNatSchG</td>
<td></td>
<td>272</td>
</tr>
<tr>
<td></td>
<td>Untersuchungsfläche errechnet aus einer Korridorbreite von jeweils 1.000 m rechts und links der Trasse; evtl. Überlagerungen von FFH- und Vogelschutzgebieten wurden in Abzug gebracht</td>
<td></td>
<td>49</td>
</tr>
</tbody>
</table>

Gesamtsumme Planungsleistungen

<table>
<thead>
<tr>
<th>#</th>
<th>Inhalt / Berechnung</th>
<th>Kalkulatorische Fläche [ha]</th>
<th>Kosten [t€uro]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>818</td>
</tr>
</tbody>
</table>

Tabelle 36 – Kostenabschätzung für UVS und naturschutzfachliche Planungsleistungen

Variante NBS Ashausen - Suderburg

Die Kosten für die naturschutzfachlichen Kompensationsmaßnahmen sind unter Worst-Case-Bedingungen in der nachfolgenden Tabelle 37 dargestellt.

Inhalt / Berechnung

<table>
<thead>
<tr>
<th>Streckenlänge, gerundet [km]</th>
<th>Kosten [t€uro]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Szenario 1:</td>
<td></td>
</tr>
<tr>
<td>Kosten für Ausgleichsmaßnahmen (errechnet über Streckenlänge und angenommene Eingriffsbreite von 16 m bei Kosten von 32,-- €uro pro m²)</td>
<td></td>
</tr>
<tr>
<td>Resultierende Gesamtkosten für Naturschutzmaßnahmen (errechnet aus den Kosten für Ausgleichsmaßnahmen, die nur 26 % der Gesamtkosten ausmachen)</td>
<td>60,5</td>
</tr>
<tr>
<td>Gesamtkosten:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>119.000</td>
</tr>
</tbody>
</table>

Szenario 2:

Gesamtkosten für Naturschutzmaßnahmen

<table>
<thead>
<tr>
<th>Streckenlänge, gerundet [km]</th>
<th>Kosten [t€uro]</th>
</tr>
</thead>
<tbody>
<tr>
<td>60,5</td>
<td>62.700</td>
</tr>
</tbody>
</table>

Tabelle 37 – Kostenabschätzung für naturschutzfachliche Kompensationsmaßnahmen

Variante NBS Ashausen - Unterlüß
9.2.7 Schalltechnische Untersuchung

Betroffenheiten

Unter Berücksichtigung von 10 % Scheibenbremsanteil bei Güterzügen und ohne Schienenbonus ergeben sich abschnittsbezogen folgende Umfänge an betroffenen Wohneinheiten (WE):

- NBS Ashausen - Suderburg 4.350 WE

Schallschutzmaßnahmen

Unter Berücksichtigung von 10 % Scheibenbremsanteil bei Güterzügen und ohne Schienenbonus werden an den betrachteten Strecken folgende Lärmschutzwände erforderlich:

- NBS Ashausen - Suderburg 22,500 km
10 Variante ABS 1960 (1-gleisig)

10.1 Verkehrsanlagen

Allgemeines

Der eingleisige Ausbau der Strecke erfolgt analog dem Bestand bahnrechts, womit die Option für einen späteren zweigleisigen Ausbau erhalten bleibt.

Die Trassierung orientiert sich stark am bestehenden Gleis, wobei einige Optimierungen beispielsweise bei Korbogenfolgen vorgenommen wurden. Insgesamt ist festzuhalten, dass eine Geschwindigkeiterhöhung auf 160 km/h – mit Ausnahme der Bahnhöfe Soltau und Visselhövede, in denen zur Vermeidung von Sprungkosten nur 120 km/h realisiert werden können – durchgehend möglich ist, ohne die vorhandene Gleislage erheblich zu verändern.

Entlang des 76 km langen Anschnitts der Strecke 1960 zwischen Uelzen und Langwedel werden 9 Kreuzungsbahnhöfe alle 9-11 km vorgesehen:

- Ebstorf (Nahverkehrshalt)
- Brockhöfe (Bf und Hp für Nahverkehrshalt)
- Munster (Nahverkehrshalt)
- Emmingen
- Soltau (Nahverkehrshalt)
- Leitzingen
- Visselhövede (Nahverkehrshalt)
- Bedingsbostel
- Kirchlinteln

Die Überholgleise werden im Gleisabstand von 4,50m bahnlinks zum Streckengleis angeordnet. Die Überholgleislängen betragen zwischen den Grenzzeichen der anbindenden 500er Weichen (V = 60 km/h) 1200 m und berücksichtigen neben einer Zuglänge von 750 m auch Durchrutschwege und beidseitige Flankenschutzweichen.

Die Bahnhöfe Munster und Visselhövede erhalten je zwei Überholgleise. Im Bf Munster wird es bahnrechts angeordnet, im Bf Visselhövede wird das vorhandene Gleis 5 erneuert und in westliche Richtung auf 750 m Nutzlänge verlängert.

Im Bereich der Kreuzungsbahnhöfe müssen folgende Bahnübergänge aufgelassen werden:

- km 11,177 (Ersatz durch EÜ/SÜ)
- km 11,536 (mit Ersatzweg über BÜ 11,177)
- km 33,978 (Ersatz durch EÜ/SÜ)
- km 35,632 (Ersatz durch EÜ/SÜ)
- km 40,820 (mit Ersatzweg)
- km 50,980 (Ersatz durch EÜ/SÜ)
- km 51,878 (Ersatz durch EÜ/SÜ)
- km 58,766 (mit Ersatzweg)
- km 70,060 (Ersatz durch EÜ/SÜ)
Für 3 Bahnübergänge bietet sich eine ersatzlose Schließung mit der Umleitung des Verkehrs zu anderen Querungsstellen an, da es sich lediglich um schwach frequentierte Übergänge handelt, die Land- und Forstwirtschaftliche Flächen erschließen. Der Bahnübergang km 40,820 wird aufgegeben und der Verkehr über die Straßenüberführung am km 40,1 umgeleitet. Der Verkehr am Bahnübergang km 58,766 wird zum Bahnübergang km 59,6 und der Verkehr vom Übergang km 64,337 zum Übergang km 65,5 geleitet.

Die übrigen Bahnübergänge der eingleisigen Strecke bleiben erhalten und werden ggf. ausgebaut.

Die bereits vorhandenen Entwässerungsanlagen entlang der Bestandsstrecke werden instandgesetzt bzw. erneuert. Im Bereich der Gleisneubauten werden neue Entwässerungseinrichtungen angeordnet.

Uelzen

Die Anbindung der nordwestlich verlaufenden Strecke 1960 an den Bahnhof Uelzen erfolgt derzeit zweigleisig bis km 2,1. Durch eine Bogenfolge mit Minimalradien von 442 m sowie eine überhöhte Weichenverbindung im Bogen und eine weitere Bogenweiche zur Strecke 1720 ist eine Geschwindigkeitsanhebung über 80 km/h im Bahnhofsbereich nicht möglich.

Die Trassierungsanpassung zur Erhöhung der Maximalgeschwindigkeit beginnt hinter der Bogenweiche bei km 0,680. Durch Vergrößerung der Überhöhung bei gleichbleibender Gleislage kann die Geschwindigkeit auf 120 km/h und ab km 1,05 auf 160 km/h erhöht werden.

Der Übergang zur Eingleisigkeit wird bei km 1,3 mit einer EW 1200-1:19,277 hergestellt. Bis hierher werden die Streckengleise im Abstand von 4m geführt. Die bestehenden Fahrbeziehungen zur Strecke 1720 bleiben erhalten.

Bis km 3,000 sind im Bereich der Geschwindigkeitsanhebung Dammüchtigungsmaßnahmen durchzuführen. Für den Kostenansatz wird aufbauend auf die geotechnischen Untersuchungen im Rahmen der EP zur ABS 52 (eingleisige Ertüchtigung für 120 km/h) von 7 teilvermörtelten je 6 m tiefen Rüttelstopfsäulen à 3 m Dammlänge sowie beidseitiger Böschungsvernagelung mit je 3 verpressten, durchschnittlich 6 m langen Böschnägeln à 1,5 m Dammlänge ausgegangen. Im Bereich von Einschnitt und Geländegleichlage zwischen km 3,1 und km 12,3 wird eine einseitige Tiefenentwässerung geplant. In den übrigen Bereichen werden beidseitig Bahngräben hergestellt.

Westerweyhe

Die Gleisanschlüsse im ehemaligen Bahnhof Westerweyhe sind zurückgebaut, ein Haltepunkt existiert hier nicht.

Für den Ersatzneubau der SÜ der Waldwege bei km 6,340 und km 9,790 ist jeweils eine Gradientenanpassung der Straße wegen der zu berücksichtigenden Oberleitung vorgesehen. Ggf. kann durch eine Gradientenanhebung der Gleise die gesamte Einschnittsaufweitung minimiert...
werden. Dies sollte auch im Hinblick auf die Reduzierung der Eingriffe in die Natur näher untersucht werden, da die Strecke hier zwischen km 6,610 und km 8,880 ein Landschaftsschutzgebiet durchquert. Ein FFH-Gebiet erstreckt sich außerhalb der DB-Grenze beiderseits der Strecke.

Ebstorf

Westlich der Ortslage Ebstorf im Abschnitt km 12,330 bis km 12,620 schneidet die Strecke ein Landschaftsschutzgebiet im Zuge des Wasserlaufes Schwienau.

Das Landschaftsschutzgebiet zwischen km und km 17,42 tangiert die Strecke 1960 von Süden. Ab km 17,42 bis km 18,81 durchqueren die Strecke ein Naturschutzgebiet.

Maßnahmen zur Dammertüchtigung wie oben beschrieben kommen in den Abschnitten km 12,300 bis km 13,000; km 15,900 bis km 16,400 und km 17,300 bis km 20,000 zum Einsatz.

Brockhöfe

Im Bereich des ehemaligen Bahnhofes Brockhöfe, km 22,5, verläuft die Bestandsstrecke eingleisig entlang eines Hausbahnsteiges. Der Haltepunkt bleibt unverändert bzw. wird angepasst. Der neu geplante Kreuzungsbahnhof Brockhöfe liegt weiter westlich zwischen km 23,6 und km 24,9.

Münster

Zwischen km 25,35 und km 28,26 wird durch die Strecke 1960 ein LSG angeschnitten. Im Bereich 27,45 und 27,75 ist es ein Naturschutzgebiet und zwischen km 27,44 und km 27,51 ein FFH-Gebiet.

Im Stadtbereich Münster bleibt der BÜ Rehrhofer Weg, km 32,744 erhalten und quert dann 2 Gleise (Streckengleis 1960 sowie abzweigende Nebenstrecke 9172).

Der Bahnhof Münster verfügt derzeit, nach umfangreichen Rückbaumaßnahmen, neben dem Streckengleis bahln links über ein Bahnhofs gleis am Hausbahnsteig und bahnrechts über ein Überholungsgleis. Am Streckengleis liegt ein Inselbahnsteig mit Reisendenübergang.

Hanloh entfallen wie auch die Stellflächen vor dem Hotelgebäude an der Brehloher Straße, die über die gesamte Grundstücksfront als Parkflächenzufahrt genutzt wird.

Da die ortsumgehenden Panzerstraßen mit Straßenüberführungen über die Strecke 1960 im Bereich der Straßenüberführungen nicht für den öffentlichen Verkehr nutzbar sind verläuft die stärkste Verkehrslast auf der B71, Soltauer Straße, durch den Ort.

Maßnahmen zur Dammertüchtigung wie oben beschrieben kommen in mehreren Teilabschnitten zwischen km 24,800 und km 43,550 zum Einsatz.

Soltau

Im weiteren Verlauf wird die bisherige Trassenführung angenommen und der neuen Entwurfsgeschwindigkeit \(v_e = 160\, \text{km/h}\) angepasst. Beide Gleise werden im Bereich des vorhandenen Bahnkörpers angeordnet.

Im Bf Soltau wird das im Bestand befindliche Gleis 2 als Überholgleis genutzt. Alle zurzeit vorhandenen Fahrbeziehungen werden beibehalten bzw. angepasst. So müssen im westlichen Bahnhofsende 2 Weichen lagemäßig angepasst werden, um die Anbindung an die Strecke 1712 zu erhalten, sowie den Flankenschutz des Überholgleises zu gewährleisten. Aufgrund der vorgegebenen Bahnhofsgestaltung und zur Vermeidung von Sprungkosten ist im Bahnhof Soltau die Entwurfsgeschwindigkeit auf \(v_e = 120\, \text{km/h}\) festgesetzt. Die Bahnsteiganlagen werden entsprechend der Spurplananpassungen um- bzw. neugebaut.

Visselhövede

Im Bereich des Bf Visselhövede entsteht gemäß der betrieblichen Vorgaben ein neuer Überholungsbahnhof. Hierbei wird das Gleis 1 als durchgehendes Richtungsgleis betrachtet. Die derzeit betrieblich genutzten, bahnlinken Gleise 2 und 5 werden als Überholungsgleise angepasst bzw. verlängert. Aufgrund der vorgegebenen Bahnhofsgestaltung und zur Vermeidung von Sprungkosten wird im Bf Visselhövede die Entwurfsgeschwindigkeit auf \(v_e = 120\, \text{km/h}\) festgesetzt. Alle zurzeit vorhandenen Fahrverbindungen werden beibehalten bzw. angepasst. Die Bahnsteiganlagen werden entsprechend der Spurplananpassungen um- bzw. neugebaut.

Weiterführung nach Langwedel

Ab ca. km 77,7 bis zur Einbindung in den Bahnhof Langwedel wird die technische Lösung der überarbeiteten Vorentwurfsplanung der DB ProjektBau GmbH unterstellt. Im Rahmen dieser Machbarkeitsstudie wird die anteilige Kostenschätzung für diesen Planungsabschnitt in der Kostenschätzung für die Variante SGV-Y berücksichtigt.
10.2 Ingenieurbauwerke

Infolge der Last- und Geschwindigkeitsanhebung wird entsprechend den Einschätzungen des Fachverantwortlichen für Brückenbelastbarkeit im Streckenabschnitt Uelzen - Visselhövede für folgende Bauwerke:

- km 2,206 EÜ Fischerhofstraße; Baujahr 1950; Grund: geringe Belastbarkeit, schlechter Bauwerkszustand
- km 38,967 EÜ Avernsche Aue; Baujahr 1907; Grund: geringe Belastbarkeit, D4(DB) wegen Radius nur bis 80 km/h zugelassen
- km 47,078 EÜ Abeldecker Weg; Baujahr 1950; Grund: wegen Radius nur bis 80 km/h zugelassen
- km 52,796 EÜ Seilerstraße, Baujahr 1901; Grund: wegen Radius nur bis 80 km/h zugelassen
- km 70,185 EÜ Personentunnel Bahnhof Visselhövede; Baujahr 1906; Grund: geringe Belastbarkeit

Ein Ersatzneubau erforderlich. Der Personentunnel imBf Visselhövede durch eine Fußgängerüberführung ersetzt.

Für folgende Bauwerke wurde seitens der Fachverantwortlichen für Brückenbelastbarkeit ein Ersatzneubau empfohlen und somit in der Machbarkeitsstudie als Ersatzneubau erfasst:

- km 40,768 Eisenbahnüberführung Böhme und Charlottenstraße; Baujahr 1907 Grund: schlechter Bauwerkszustand
- km 51,440 Eisenbahnüberführung Böhme und Charlottenstraße; Baujahr 1872 Grund: eingeschränkte Durchfahrtshöhe, starke Anfahrschäden, anderes nebenliegendes Bauwerk.

Für die Eisenbahnüberführung Fußweg in Soltau (Baujahr 1913) im km 51,908 wird aufgrund des absehbaren Erreichens der Restnutzungsdauer seitens des Fachverantwortlichen für Brückenbelastbarkeit ebenfalls ein Ersatzneubau empfohlen. Im Rahmen der Machbarkeitsstudie wird der Rückbau der Eisenbahnüberführung vorgesehen. Die Funktion der Fußwegüberführung wird durch den Neubau der Eisenbahnüberführung Walsroder Straße im unmittelbaren Umfeld übernommen – die Eisenbahnüberführung wird für den Bahnübergang Walsroder Straße im km 51,878 errichtet und ermöglicht die Querung der Gleise unabhängig vom Bahnbetrieb.

Im Zusammenhang mit der Ertüchtigung der Strecke erfolgt die Elektrifizierung der Strecke. In Teilabschnitten befinden sich Straßenüberführungen, deren lichte Höhe (Durchfahrtshöhe) aus der vorliegenden Bauwerksliste nicht ersichtlich ist. Eine Beurteilung hinsichtlich der Elektrifizierung des Streckenabschnittes konnte somit nicht durchgeführt werden, so dass für die folgenden Straßenüberführungen (SÜ):

- SÜ Feldweg, km 6,340
Ersatzneubauten sowie Gradientenanpassungen geplant werden.

Im Streckenabschnitt Uelzen – Soltau wird anhand des vorhandenen Straßennetzes und der vorhandenen Bahnübergänge von einem größeren Verkehrsaufkommen und einem erheblichen Querungsbedarf der Bahnstrecke 1960 ausgegangen. Folgende Bahnübergänge werden durch Ingenieurbauwerke ersetzt:

- L250, km 11,177 EÜ/SÜ
- Brehlower Straße, km 33,978 EÜ/SÜ
- Soltaustraße, km 35,632 EÜ/SÜ

Im Raum Soltau und Visselhövede werden folgende Bahnübergänge

- B3, Celler Straße, km 50,980 EÜ/SÜ
- Walsroder Straße, km 51,878 EÜ/SÜ
- Bahnhofstraße, km 70,060 EÜ/SÜ

aufgrund des größer angenommenen Verkehrsaufkommens gegenüber ländlichen Bereichen durch Ingenieurbauwerke ersetzt. Die Bahnübergänge im ländlichen Gebiet werden mittels Umbaumaßnahmen erfasst.

Für die Durchlässe wird eine weitere Nutzung der Bestandsbauwerke angenommen und pauschal Instandsetzungsarbeiten angesetzt. Bauwerksgutachten, Aussagen zur Tragsicherheit sowie Einschätzungen bezüglich der Geschwindigkeitsanhebung unter Berücksichtigung der erhöhten Achslast liegen nicht vor.
10.3 Anlagen der Leit- und Sicherungstechnik

Grundlage für die Betrachtung der Anlagen der Leit- und Sicherungstechnik waren die betrieblichen Vorgaben (Stand: 16.12.2011) und die neueste z.Z. verfügbare ESTW-Technik, firmenunabhängig.

Als Signalsystem wurden Ks-Signale mit PZB vorgesehen, zur Gleisfreimeldung Achszähler.

Kabeltiefbaukosten wurden berücksichtigt.

10.4 Oberleitungsanlage

Bauarten der Oberleitung

Die genannten Bauarten erlauben den Einsatz des DB-Standard-Stromabnehmers (Stromabnehmer TYP 1.950) sowie der interoperablen Eurowippe (Stromabnehmer TYP 1.600).

Die gesamten Oberleitungsanlagen werden für einen Temperaturbereich von 100 K ausgelegt. Bei der Planung der Oberleitung wird die in Ebs 02.05.32 genannte Bemessungswindgeschwindigkeit von 26 m/s zu Grunde gelegt.

Wegen der hohen Leistungsentnahme der Hochgeschwindigkeitszüge wird gemäß Forderungen der DB Energie die Strecke mit beidseitigen Verstärkungsleitungen (15 kV, 16,7 Hz) ausgerüstet.

Maste und Fundamente

Die neu zu errichtende Oberleitungsanlage wird in konsequenter Einzelmastbauweise realisiert. Die Oberleitungsmaste werden gemäß Ril 997.01 vorzugsweise in Betonbauweise ausgeführt.

Die Fundamente der Oberleitung werden vorzugsweise als Rammgründungen ausgeführt.

Im Bereich der Bahnübergänge werden Kettenwerksanhebungen realisiert, so dass die minimale Fahrradrahthöhe von 5,50 m unter Berücksichtigung der Zusatzlasten über der kreuzenden Straße nicht unterschritten wird.
Weiterhin wird die Strecke 1960 an drei Stellen niveaufrei von anderen Eisenbahnstrecken gekreuzt:

- km 50,038 (1960/50,038/1817)
- km 50,357 (1712/89,760/1641)
- km 53,701 (1960/53,701/1817)

Über die lichten Höhen der Kreuzungsbauwerke liegen derzeit keine Angaben vor.

Außerdem wird die Strecke 1960 an folgenden Streckenkilometern niveaufrei von Straßenüberführungen gekreuzt:

- SÜ Feldweg, km 6,340
- SÜ Feldweg, km 9,790
- SÜ Ellendorfer Straße, km 20,207
- SÜ Feldweg, km 20,844
- SÜ Panzerstraße, km 31,150
- SÜ Panzerstraße, km 36,622
- SÜ Straße über Eisenbahn (K36), km 40,147
- SÜ BAB A7, km 45,130
- SÜ Celler Straße, km 68,374

Über die lichten Höhen der Bauwerke liegen derzeit keine Angaben vor. Beim Ersatzneubau der Bauwerke ist die zukünftige Elektrifizierung zu berücksichtigen, d.h. die Bauwerke sind gem. Ril 997 mit einer lichten Höhe von mindestens 5,70 m zu planen.

Einbindung Bf Uelzen

Die Einbindung der Strecke 1960 in den Bf Uelzen ist oberleitungstechnisch im Bestand vorhanden. Da hierbei allerdings keine Befahrung mit der Eurowippe gegeben ist, ist ein Neubau der Oberleitungsanlage für die Einbindung erforderlich.

OSE-Kabelanlagen

Für die Steuerung der Masttrennschalter werden insbesondere im Bereich der Bahnhöfe OSE-Kabelanlagen neu errichtet und an die seitens DB Energie geplanten Fernwirk-Unterstationen angeschlossen.

Schnittstellen für die OSE-Außenkabelanlagen sind die Hauptklemmleisten (HX 1) der Fernwirkunterstationen für die Steuerung der Oberleitungsschalter und die Klemmleisten der Masttrennschalterantriebe. Die Planung und Realisierung der OSE- Fernwirkunterstationen und der HX 1-Klemmleisten erfolgen in Zuständigkeit der DB Energie.

Fernwirkunterstation OSE

Für die Ansteuerung der Masttrennschalter werden neue Fernwirk-Unterstationen OSE vorzugsweise in den neu geplanten ESTW-Modulen installiert und in die neu zu erstellende Fernwirklinie eingebunden.
Erdungsanlagen im Oberleitungsbereich

Die Erdungs- und Rückleitungsanlagen werden im gesamten Bauvorhaben gemäß Ril 997.02 ff. sowie Technischer Mitteilung TM 2008 – 064 I.NVT 4 E unter Verwendung von flexiblen Stahlseil nach Ebs 20.01.02 mit Querschnitt 1x95 mm² ausgeführt (Diebstahlschutz).

Bei der Planung und Errichtung von Erdungsanlagen im Bereich der Oberleitung wird ein Kurzschlussstrom gemäß den Vorgaben von DB Energie zu Grunde gelegt.

10.5 Elektrotechnische Anlagen für Licht- und Kraftstrom

Energieversorgung:

Im Zuge der Ertüchtigung und Elektrifizierung der Gleisanlage der Strecke 1960 werden die Energieversorgungen in den betroffenen Bahnhöfen erneuert. Dabei werden die vorhandenen Hausanschlüsse angepasst und ggf. wegen des erhöhten Leistungsbedarfs (ESTW-Anschlüsse und neue Beleuchtungsanlagen) verstärkt.

Die Energieversorgung der neuen ESTW-Module wird über Trenntransformatoren zur NetztreNNung erfolgen. Um die unterbrechungsfreie Energieversorgung der neuen ESTW-Module zu gewährleisten, werden diese mit Netzersatzanlagen, die aus dem Netz der Oberleitung eingespeist werden, ausgerüstet.

Elektrische Weichenheizanlagen:

Bahnsteigbeleuchtungsanlagen und Ausrüstungen:

Im Bahnhof Uelzen werden keine Änderungen an den vorhandenen Beleuchtungsanlagen der Bahnsteige vorgenommen.

Im Zuge der Ertüchtigung und Elektrifizierung der Gleisanlage im Bereich der Verkehrsstationen Ebstorf, Brockhöfe, Munster, Soltau und Visselhövede werden die Beleuchtungsanlagen der vorhandenen bzw. neu zu errichtenden Bahnsteige erneuert bzw. neu gebaut. Die bestehenden und neu zu errichtenden Ausrüstungen werden an die neuen Verteilungen (Standardbauweise) der DB Station&Service angeschlossen.

Gleisfeldbeleuchtungsanlagen:

Die durch die Ertüchtigung und Elektrifizierung der Gleisanlagen betroffenen Gleisfeldbeleuchtungsanlagen in den Verkehrsstationen Brockhöfe, Munster und Soltau werden angepasst und an die neu zu errichteten Beleuchtungsverteilungen der DB Netz angeschlossen. Im Rahmen der weiteren Planungsphasen ist zu prüfen, ob die Anlagen der Gleisfeldbeleuchtung zu erneuern bzw. wegen der neuen Dienstwege zu erweitern sind. Hierzu sind die Anlagenverantwortlichen und der Betreiber hinzuzuziehen.
10.6 Naturschutz

10.6.1 Qualitative Risikobewertungen betroffener Schutzgebiete

In der nachfolgenden Tabelle 38 sind die im geplanten Trassenbereich der Strecke 1960 identifizierten Schutzgebiete gelistet.

<table>
<thead>
<tr>
<th>Schutzgebietstyp</th>
<th>ABS 1960 Uelzen (a) – Ebstorf West (e) [km]</th>
<th>ABS 1960 Ebstorf West (a)– Soltau (a) [km]</th>
<th>ABS 1960 Soltau (e) – Visselhövede (e) [km]</th>
<th>ABS 1960 Visselhövede (a) – Langwedel [km]</th>
<th>Summe [km]</th>
</tr>
</thead>
<tbody>
<tr>
<td>FFH</td>
<td>2,820</td>
<td>0,750</td>
<td>0,540</td>
<td>0,190</td>
<td>4,300</td>
</tr>
<tr>
<td>HQSG</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LSG</td>
<td>9,760</td>
<td>4,300</td>
<td>2,630</td>
<td>0,270</td>
<td>16,960</td>
</tr>
<tr>
<td>NSG</td>
<td>1,330</td>
<td>0,490</td>
<td>0</td>
<td>0</td>
<td>1,820</td>
</tr>
<tr>
<td>ÜBSchG</td>
<td>0</td>
<td>0,240</td>
<td>0,380</td>
<td>0</td>
<td>0,620</td>
</tr>
<tr>
<td>VSG</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>WSG</td>
<td>1,530</td>
<td>0</td>
<td>0</td>
<td>5,700</td>
<td>7,230</td>
</tr>
<tr>
<td>Summe</td>
<td>15,440</td>
<td>5,780</td>
<td>3,550</td>
<td>6,16</td>
<td>30,930</td>
</tr>
</tbody>
</table>

Tabelle 38 - Identifizierte Schutzgebiete Variante ABS 1960 (1-gleisig)

10.6.2 Variante ABS 1960 (1-gleisig) - Kostenschätzung für naturschutz-fachliche Kompensationsmaßnahmen

Die Kostenschätzungen für die umweltpplanerischen Instrumente und deren Herleitung sind unter Worst-Case-Bedingungen in der Tabelle 39 dargestellt:

<table>
<thead>
<tr>
<th>#</th>
<th>Inhalt / Berechnung</th>
<th>Kalkulatorische Fläche [ha]</th>
<th>Kosten [t€uro]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Umweltverträglichkeitsstudie
Untersuchungsfläche errechnet aus einer Korridorbreite von jeweils 1.000 m rechts und links der Trasse</td>
<td>18.200</td>
<td>632</td>
</tr>
<tr>
<td>2</td>
<td>Eingriffsregelung
Untersuchungsfläche errechnet aus einer Korridorbreite von jeweils 500 m rechts und links der Trasse</td>
<td>8.900</td>
<td>119</td>
</tr>
</tbody>
</table>
Inhalt / Berechnung

<table>
<thead>
<tr>
<th>#</th>
<th>Artenschutz-Fachbeitrag</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Untersuchungsfläche errechnet aus einer Korridorbreite von 500 m rechts und links der Trasse mit folgenden Flächenanteilen</td>
</tr>
<tr>
<td></td>
<td>20% der FFH-Gebietsfläche</td>
</tr>
<tr>
<td></td>
<td>50% der VSG-Gebietsfläche</td>
</tr>
<tr>
<td></td>
<td>100% der NSG-Gebietsfläche</td>
</tr>
<tr>
<td></td>
<td>20% der LSG-Gebietsfläche</td>
</tr>
<tr>
<td></td>
<td>Kosten Kartierleistungen:</td>
</tr>
<tr>
<td></td>
<td>Kosten Fachbeitrag:</td>
</tr>
<tr>
<td></td>
<td>Gesamtkosten Fachbeitrag:</td>
</tr>
</tbody>
</table>

Inhalt / Berechnung

<table>
<thead>
<tr>
<th>#</th>
<th>Verträglichkeit nach § 34 BNatSchG</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Untersuchungsfläche errechnet aus einer Korridorbreite von jeweils 1.000 m rechts und links der Trasse; evtl. Überlagerungen von FFH- und Vogelschutzgebieten wurden in Abzug gebracht</td>
</tr>
<tr>
<td></td>
<td>Kosten:</td>
</tr>
<tr>
<td></td>
<td>Kosten Fachbeitrag:</td>
</tr>
</tbody>
</table>

Gesamtsumme Planungsleistungen

1.594

Tabelle 39 – Kostenabschätzung für UVS und naturschutzfachliche Planungsleistungen

Variante ABS 1960 (1-gleisig)

Die Kosten für die naturschutzfachlichen Kompensationsmaßnahmen sind unter Worst-Case-Bedingungen in der nachfolgenden Tabelle 40 dargestellt.

<table>
<thead>
<tr>
<th>Inhalt / Berechnung</th>
<th>Streckenlänge, gerundet [km]</th>
<th>Kosten [t€uro]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Szenario 1:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kosten für Ausgleichsmaßnahmen (errechnet über Streckenlänge und angenommene Eingriffsbreite von 16 m bei Kosten von 32,-- €uro pro m²)</td>
<td>86,4</td>
<td>44.200</td>
</tr>
<tr>
<td>Resultierende Gesamtkosten für Naturschutzmaßnahmen (errechnet aus den Kosten für Ausgleichsmaßnahmen, die nur 26 % der Gesamtkosten ausmachen)</td>
<td></td>
<td>170.200</td>
</tr>
<tr>
<td>Gesamtkosten:</td>
<td>170.200</td>
<td></td>
</tr>
<tr>
<td>Szenario 2:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gesamtkosten für Naturschutzmaßnahmen</td>
<td>86,4</td>
<td>89.500</td>
</tr>
</tbody>
</table>

Tabelle 40 – Kostenabschätzung für naturschutzfachliche Kompensationsmaßnahmen

Variante ABS 1960 (1-gleisig)
10.7 Schalltechnische Untersuchung

Betroffenheiten
Unter Berücksichtigung von 10 % Scheibenbremsanteil bei Güterzügen und ohne Schienenbonus ergeben sich abschnittebezogen folgende Umfänge an betroffenen Wohneinheiten (WE):

- ABS 1960 Uelzen (a) – Ebstorf West (e) 3.774 WE
- ABS 1960 Ebstorf West (a) – Soltau (a) 14.739 WE
- ABS 1960 Soltau (e) – Visselhövede (e) 5.999 WE
- ABS 1960 Visselhövede (a) – Langwedel 604 WE

In Summe sind bei der Strecke 1960 ca. 25.100 WE durch Schallimmissionen betroffen.

Schallschutzmaßnahmen
Unter Berücksichtigung von 10 % Scheibenbremsanteil bei Güterzügen und ohne Schienenbonus werden an den betrachteten Strecken folgende Lärmschutzwände erforderlich:

- ABS 1960 Uelzen (a) – Ebstorf West (e) 12,800 km
- ABS 1960 Ebstorf West (a) – Soltau (a) 21,880 km
- ABS 1960 Soltau (e) – Visselhövede (e) 19,550 km
- ABS 1960 Visselhövede (a) – Langwedel 10.820 km

In Summe ergeben sich bei der Strecke 1960 Lärmschutzwände auf einer Länge von ca. 65,0 km.
11 Erschütterung – sekundärer Luftschall

11.1 Grundsatz

Erschütterungsimmissionen zählen zu den schädlichen Umwelteinwirkungen im Sinne des § 3 Abs. 1 BlmSchG, wenn sie nach Art, Ausmaß oder Dauer geeignet sind, Gefahren, erhebliche Nachteile oder erhebliche Belästigungen gegenüber der Nachbarschaft herbeizuführen.

§ 41 BlmSchG schreibt vor, dass beim Bau oder der wesentlichen Änderung öffentlicher Straßen und Schienenwege sicherzustellen ist, dass durch diese keine schädlichen Umwelteinwirkungen hervorgerufen werden können, die nach dem Stand der Technik vermeidbar sind.

Im Gegensatz zu Immissionen aus dem Verkehr gibt es für Erschütterungen keine gesetzlichen Grenzwerte und es fehlt eine Aussage, ab welcher Stärke Erschütterungen als erheblich, unzumutbar oder schädlich einzustufen und demgemäß zu beurteilen sind. Hier wird auf die DIN 4150-2 verwiesen.

11.2 Schienenverkehr

Eine Erschütterungsprognose sollte im nächsten Schritt, im Rahmen einer ausgewählten Vorzugsvariante untersucht werden, da

- zum einen von einer mindestens 25 % -igen Erhöhung der Beurteilungsschwingstärke (allgemein gültig für das Kriterium einer wesentlichen Änderung für Erschütterungsaustrichtungen) aus zu gehen ist,
- sich die Zugbelegungen auf den Ausbaustrecken erhöhen bzw. neu hinzukommen und
- Erschütterungsprognosen aufgrund von vorzunehmenden Messungen an den Bestandsstrecken oder unter Zuhilfenahme künstlicher Erschütterungsanregungen zu erstellen sind.

aufgestellt:

Berlin, den 29.11.2013

DB International GmbH in Zusammenarbeit mit: DB Umweltzentrum und Region Deutschland Nord DB Energie